Skip to main content

Changes in the Human Thymus During Aging

  • Chapter
The Human Thymus

Part of the book series: Current Topics in Pathology ((CT PATHOLOGY,volume 75))

Abstract

Although the biological mechanisms of aging are poorly understood, many clinical observations have suggested a close relation between senescence and immunity. Apart from a progressive decrease in muscular power and sensory perception, and loss of cells from most organs and tissues, aging is paralleled by an increasing vulnerability to infections and an increasing liability to malignant tumors and autoimmune conditions. Late-life high-incidence diseases, including vascular disease, maturity-onset diabetes, cancer, amyloidosis, and senile dementia, all exhibit malfunctions of the immune system or are somehow related to the immune system (WALFORD 1980). Speculations and theories about aging and immunity are manifold. Their rationales range from explaining aging by a committed progressive breakdown of functions of immunocompetent cells and their clonal exhaustion (WALFORD 1969; BURNET 1970; HOLLIDAY et al. 1981) to explaining progressive loss of immunity by phenomena of aging such as: (a) somatic mutation (ORGEL 1963, 1973); (b) error in replication or repair of DNA (JOHNSON and STREHLER 1972; HART and SETLOW 1974); (c) error proneness of DNA polymerases and related enzymes (BURNET 1976); or (d) respiration-dependent injury to the mitochondrial genome (FLEMING et al. 1982) in other cells than immunocompetent cells. Several excellent recent reviews have compiled mutual associations between age and immune system of different species, including man (WALFORD 1969; MAKINODAN et al. 1971; KAY and MAKINODAN 1976; MAKINODAN and YUNIS 1977; YUNIS et al. 1978; GOOD et al. 1979; KISHIMOTO and MITSUYA 1980; WILLIAMS et al. 1980; Leech 1980; WEKSLER 1980; MAKINODAN 1980; KAY and MAKINODAN 1981). In particular, T cell system-dependent immune functions seem to decline with age (Table 1), whereas functions of macrophages and B cells do not appear to be impaired (YUNIS et al. 1978; KAY and MAKINODAN 1981; BENNER et al. 1981).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe T, Morimoto C, Toguchi T, Kiyotaki M, Homma M (1981) Evidence of aberration of T-cell subsets in aged individuals. Scand J Immunol 13: 151–157

    PubMed  CAS  Google Scholar 

  • Albright JF, Makinodan T (1966) Growth and senescence of antibody-forming cells. J Cell Physiol 67: 185–206

    PubMed  Google Scholar 

  • Alder SJ, Morley AA, Seshadri RS (1982) Reduced lymphocyte colony formation with age. Clin Exp Immunol 49: 129–134

    PubMed  CAS  Google Scholar 

  • Amano M, Hamatani K (1981) The short-lived lymphocyte in the thymus cortex of the rat. Cell Structure and Function 6: 159–166

    Google Scholar 

  • Antel JP, Arnason BGW (1979) Suppressor cell function in man: evidence for altered sensitivity of responder cells with age. Clin Immunol Immunopathol 13: 119–124

    PubMed  CAS  Google Scholar 

  • Apostoloff E, Friedel E, Apostoloff G, Jakobza D (1980) Zelluläre Immunreaktionen in vivo und in vitro bei Menschen im höheren Lebensalter. ZFA 35: 211–213

    PubMed  CAS  Google Scholar 

  • Bach JF, Dardenne M, Bach MA (1973) Demonstration of a circulating thymic hormone in mouse and in man. Transplant Proc 5: 99–104

    PubMed  CAS  Google Scholar 

  • Bach JF, Dardenne M, Plean JM, Bach MA (1975) Isolation, biochemical characteristics, and biological activity of a circulating thymic hormone in the mouse and in the human. Ann NY Acad Sci 249: 186–210

    PubMed  CAS  Google Scholar 

  • Bach MA (1977) Lymphocyte-mediated cytotoxicity: effects of ageing, adult thymectomy and thymic factor. J Immunol 119: 641–647

    PubMed  CAS  Google Scholar 

  • Bargmann W (1943) Der Feinbau des Thymus. In: von Möllendorf W (ed) Innersekretonische Drüsen III: Thymus, Paraganglien. Epiphyse, Lymphgefäßapparat. Springer, Berlin (Handbuch der mikroskopischen Anatomie des Menschen, vol 6/4)

    Google Scholar 

  • Baroni CD, Rigato P, Ruco L, Uccini S, Mineo T, Ricci C (1980) PHA and Con A lymphocyte response in normal, hyperplastic and neoplastic human thymus: morphologic and functional correlations. Cancer 46: 2055–2061

    PubMed  CAS  Google Scholar 

  • Becker MJ, Farkas R, Schneider M, Drucker I, Klajman A (1979) Cell-mediated cytotoxicity in humans: age-related decline as measured by a xenogeneic assay. Clin Immunol Immunopathol 14: 204–210

    PubMed  CAS  Google Scholar 

  • Bellamy D, Hinsull SM (1977) Density-dependent cell division after cortisol treatment of rat thymus in relation to age involution. Virch Arch B [Cell Pathol] 24: 251–261

    CAS  Google Scholar 

  • Beller DI, Unanue ER (1979) Evidence that thymocytes require at least two distinct signals to proliferate. J Immunol 123: 2890–2893

    PubMed  CAS  Google Scholar 

  • Benner R, Rijnbeek AM, Bernabe RR, Martinez-Alonso C, Coutinho A (1981) Frequencies of background immunoglobulin-secreting cells in mice as a function of organ, age, and immune status. Immunobiology 158: 225–238

    PubMed  CAS  Google Scholar 

  • Bennink JR, Doherty PC (1981) Thymocytes can be stimulated to give a strong vaccinia virus-immune cytotoxic T lymphocyte response. J Immunol Meth 43: 79–85

    CAS  Google Scholar 

  • Berg BN, Simms HS (1960) Nutrition and longevity in the rat. II. Longevity and onset of disease with different levels of food intake. J Nutr 71: 255–263

    CAS  Google Scholar 

  • Bhan AK, Reinherz EL, Poppema S, McCluskey RT, Schlossman SF (1980) Location of T cell and major histocompatibility complex antigens in the human thymus. J Exp Med 152: 771–782

    PubMed  CAS  Google Scholar 

  • Borum K (1973) Cell kinetics in mouse thymus studied by simultaneous use of 3H-thymidine and colchicine. Cell Tissue Kinet 6: 545–552

    PubMed  CAS  Google Scholar 

  • Boss GR, Thompson LF, Hegelberg HL, Pichler WJ, Seegmiller E (1980) Age-dependency of lymphocyte ecto-5′-nucleotidase activity. J Immunol 125: 679–682

    PubMed  CAS  Google Scholar 

  • Bowen ID, Lewis GHJ (1980) Acid phosphatase activity and cell death in mouse thymus. Histochemistry 65: 173–179

    PubMed  CAS  Google Scholar 

  • Boyd E (1932) The weight of the thymus gland in health and in disease. Am J Dis Child 43: 1162–1214

    Google Scholar 

  • Bratton AB (1925) The normal weight of the human thymus. J Pathol Bacteriol 28: 609–620

    Google Scholar 

  • Buckley CE III, White DH (1979) Aging and immunocompetence skin testing. Excerpta Medica 469: 444–449

    Google Scholar 

  • Burek JD, Meihuizen SP (1977) Age-associated changes in the thymus of aging BN/Bi rats. In: Schmidt UJ, Bruschke G, Lang E, Vüditz A, Platt D, Frolkis VV, Schulz FH (eds) Vth European symposium on basic research in gerontology. Perimed, Erlangen

    Google Scholar 

  • Burnet FM (1970) An immunologic approach to ageing. Lancet 2: 358–360

    PubMed  CAS  Google Scholar 

  • Burnet FM (1976) Immunology, aging, and cancer. Freeman, San Francisco

    Google Scholar 

  • Callard RE, Basten A (1977) Immune function in aged mice. I. T-cell responsiveness using phytohaemagglutin as a functional probe. Cell Immunol 31: 13–25

    PubMed  CAS  Google Scholar 

  • Cantor H, Weissman IL (1976) Development and function of subpopulations of thymocytes and T lymphocytes. Prog Allergy 20: 1–64

    PubMed  CAS  Google Scholar 

  • Carnaud C, Charreire J, Bach JF (1977) Adult thymectomy promotes the manifestation of autoreactive lymphocytes. Cell Immunol 28: 274–283

    PubMed  CAS  Google Scholar 

  • Carr JL (1945) Status thymicolymphaticus. J Pediatr 27: 1–43

    Google Scholar 

  • Chen MG (1971) Age-related changes in hematopoietic stem cell populations of a long-lived hybrid mouse. J Cell Physiol 78: 225–232

    PubMed  CAS  Google Scholar 

  • Chen MG (1974) Impaired Elkind recovery in hematopoietic colony-forming cells of aged mice. Proc Soc Exp Biol Med 145: 1181–1186

    PubMed  CAS  Google Scholar 

  • Cheung HT, Vovolka J, Terry DS (1981) Age-and maturation-dependent changes in the immune system of Fischer F 344 rats. J Reticuloendothel Soc 30: 563–572

    PubMed  CAS  Google Scholar 

  • Chiodi H (1938) El timo en relacion con el crecimiento y la funcion sexual. Elateneo, Buenos Aires

    Google Scholar 

  • Claesson MH, Hartmann MR (1976) Cytodynamics in the thymus of young adult mice: quantitative study on the loss of thymic blast cells and non-proliferative small lymphocytes. Cell Tissue Kinet 9: 273–291

    PubMed  CAS  Google Scholar 

  • Conlon PJ, Henney CS, Gillis S (1982) Cytokine-dependent thymocyte responses: characterization of IL 1 and IL 2 target subpopulations and mechanism of action. J Immunol 128: 797–801

    PubMed  CAS  Google Scholar 

  • Cowan WK, Sorensen GD (1964) Electron microscopic observations of acute thymic involution produced by hydrocortisone. Lab Invest 13: 353–370

    PubMed  CAS  Google Scholar 

  • Cowan MJ, Fujiwara P, Wara DW, Ammann AJ (1981) Effect of thymosin on cellular immunity in old age. Mechan Age Dev 15: 29–39

    CAS  Google Scholar 

  • Czlonkowska A, Korlak J (1979) The immune response during aging. J Gerontol 34(1): 9–14

    PubMed  CAS  Google Scholar 

  • Doria G, d’Agostora G, Garavani M (1980) Age-dependent changes of B-cell reactivity and T cell-T cell interaction in the in vitro antibody response. Cell Immunol 53: 195–206

    PubMed  CAS  Google Scholar 

  • Engleman EG, Warnke R, Fox RI, Levy R (1981) Studies of a human T lymphocyte antigen recognized by a monoclonal antibody. Proc Natl Acad Sci USA 78: 1791–1795

    PubMed  CAS  Google Scholar 

  • Evans RL, Wall DW, Platsoucas CD, Siegal FP, Fikrig SM, Testa CM, Good RA (1981) Thymus-dependent membrane antigens in man: inhibition of cell-mediated lympholysis by monoclonal antibodies to the TH2 antigen. Proc Natl Acad Sci USA 78: 544–548

    PubMed  CAS  Google Scholar 

  • Ewijk W van, Rouse RV, Weissman IL (1980) Distribution of H-2 microenvironments in the mouse thymus. Immunoelectron microscopic identification of I-A and H-2K bearing cells. J Histochem Cytochem 28: 1089–1099

    PubMed  Google Scholar 

  • Fernandes G, Gupta S (1981) Natural killing and antibody-dependent cytotoxicity by lymphocyte subpopulation in young and aging humans. J Clin Immunol 1: 141–148

    PubMed  CAS  Google Scholar 

  • Fleming JE, Miquel J, Cottrell SF, Yengoyan LS, Economos AC (1982) Is cell aging caused by respiration-dependent injury to the mitochondrial genome? Gerontology 28: 44–53

    PubMed  CAS  Google Scholar 

  • Flood PM, Urban JL, Kripke ML, Schreiber H (1981) Loss of tumor-specific and idiotype-specific immunity with age. J Exp Med 154: 275–290

    PubMed  CAS  Google Scholar 

  • Fraenkel-Conrat HL, Meamber DL, Simpson ME, Evans HM (1940) Further purification of growth hormone of anterior pituitary. Endocrinology 27: 605–613

    CAS  Google Scholar 

  • Friedman D, Keiser V, Globerson A (1974) Reactivation of immunocompetence in spleen cells of aged mice. Nature 251: 545–547

    PubMed  CAS  Google Scholar 

  • Galili U, Schlesinger M (1975) Subpopulation of human thymus cells differing in their capacity to form stable E-rosettes and in their immunologic reactivity. J Immunol 115: 827–833

    PubMed  CAS  Google Scholar 

  • Gerdes J Schwab U, Lemke H, Stein H (1983) Production of a mouse monoclonal antibody reactive with human nuclear antigen associated with cell proliferation. Int J Cancer 31: 13–20

    PubMed  CAS  Google Scholar 

  • Gheschlaghi ME (1977) Altersveränderungen der B-und T-Regionen im menschlichen Lymphknoten. Dissertation, Faculty of Medicine, University of Kiel

    Google Scholar 

  • Gillis S, Kozak R, Durante M, Weksler ME (1981) Immunological studies of aging: decreased production of and response to T cell growth factor by lymphocytes from aged humans. J Clin Invest 67: 937–942

    PubMed  CAS  Google Scholar 

  • Gilman SC, Rosenberg JS, Feldman JD (1982) T lymphocytes of young and aged rats. II. Functional defects and the role of interleukin 2. J Immunol 128: 644–650

    PubMed  CAS  Google Scholar 

  • Goldstein G, Mackay IR (1970) The human thymus. Heinemann, London

    Google Scholar 

  • Goldstein AL, Hooper JA, Schulof RS, Cohen GH, Thurman GB, McDaniel MC, White A, Dardenne M (1974) Thymosin and the immunopathology of aging. Fed Proc 33: 2053–2056

    PubMed  CAS  Google Scholar 

  • Gomori G (1937) Silver impregnation of reticulum in paraffin section. Am J Pathol 13: 993–1002

    PubMed  CAS  Google Scholar 

  • Good RA, Dalmasso AP, Martinez C, Archer OK, Pierce JC, Papermaster BW (1962) The role of the thymus in development of immunologic capacity in rabbits and mice. J Exp Med 116: 773–796

    PubMed  CAS  Google Scholar 

  • Good RA, Fernandes G, West A (1979) Nutrition, immunologic age, and disease. In: Singhai SK, Sinclair NR, Stiller CR (eds) Aging and immunity. Elsevier/North-Holland, New York, pp 141–164

    Google Scholar 

  • Goodwin JS, Messner RP (1979) Sensitivity of lymphocytes to prostaglandin E2. Increase in subjects over age 70. J Clin Invest 64: 434–439

    PubMed  CAS  Google Scholar 

  • Greenwood M, Woods HM (1927) “Status thymico-lymphaticus” considered in the light of recent work on the thymus. J Hyg (Camb) 26: 305–326

    CAS  Google Scholar 

  • Grégoire C (1947) Factors involved in maintaining involution of thymus during suckling. J Endocrinol 5: 68–87

    PubMed  Google Scholar 

  • Gross L (1965) Immunologic defect in aged population and its relation to cancer. Cancer 18: 201–204

    PubMed  CAS  Google Scholar 

  • Gupta S, Good RA (1979) Subpopulations of human T lymphocytes. X. Alterations in T, B, third population cells and T cells with receptors for immunoglobulin M (T μ) or G (T γ) in aging humans. J Immunol 122: 1214–1219

    PubMed  CAS  Google Scholar 

  • Haagensen CD, Lane N, Lattes R (1972) Neoplastic proliferation of the epithelium of the mammary lobules of adenosis, lobular neoplasia, and small cell carcinoma. Surg Clin North Am 52: 497–524

    PubMed  CAS  Google Scholar 

  • Haaijman JJ, Micklem H, Ledbetter JA, Dangl JL, Herzenberg LA (1981) T cell ontogeny organ location of maturing population as defined by surface antigen markers is similar in neonates and adults. J Exp Med 153: 605–614

    PubMed  CAS  Google Scholar 

  • Hallgren HM, Kersey JH, Dubey DP, Yunis EJ (1978) Lymphocyte subsets and integrated immune function in aging humans. Clin Immunol Immunopathol 10: 65–68

    PubMed  CAS  Google Scholar 

  • Hallgren HM, Jackola DR, O’Leary JJ (1983) Unusual pattern of surface marker expression on peripheral lymphocytes from aged humans suggestive of a population of less differentiated cells. J Immunol 131: 191–194

    PubMed  CAS  Google Scholar 

  • Hammar JA (1906) Über Gewicht, Involution und Persistenz des Thymus im Postfötalleben des Menschen. Arch Anat Physiol, Anat Abt [Suppl] 91–182

    Google Scholar 

  • Hammar JA (1926) Der Menschenthymus in Gesundheit und Krankheit: Ergebnisse der numerischen Analyse von mehr als tausend menschlichen Thymusdrüsen. Teil 1: Das normale Organ — zugleich eine kritische Beleuchtung der Lehre des “Status thymicus”. Z Mikrosk Anat Forsch

    Google Scholar 

  • Han T, Monowada J, Subramanian S, Sinks LF (1976) Human thymus cells: blastogenic response to mitogens, antigens and allogenic cells. Immunology 31: 519–525

    PubMed  CAS  Google Scholar 

  • Hart RW, Setlow RB (1974) Correlation between deoxyribonucleic acid excision-repair and life span in a number of mammalian species. Proc Natl Acad Sci USA 71: 2169–2173

    PubMed  CAS  Google Scholar 

  • Hayflick L (1976) The cell biology of human aging. N Engl J Med 295: 1302–1308

    PubMed  CAS  Google Scholar 

  • Hayward AR, Kurnick JT, Clarke DR (1981) T cell growth factor-enhanced PHA response of human thymus cells: requirement for T3+ cells. J Immunol 127: 2079–2082

    PubMed  CAS  Google Scholar 

  • Heidrick ML (1973) Imbalanced cyclic-AMP and cyclic-GMP levels in concanavalin-A stimulated spleen cells from aged mice. J Cell Biol 57:139 (abstract)

    Google Scholar 

  • Henry K, Farrer-Brown G (1981) A colour atlas of thymus and lymph node histopathology with ultrastructure. Wolfe, London

    Google Scholar 

  • Heron I (1981) Age-dependent allospecific change in susceptibility to local lymph node GVHR in rats. Scand J Immunol 14: 585–590

    PubMed  CAS  Google Scholar 

  • Hinsull SM, Bellamy D (1981) Tissue homeostasis and cell death. In: Bowen ID, Lockshin RA (eds) Cell death in biology and pathology. Chapman and Hall, London

    Google Scholar 

  • Hinsull SM, Bellamy D, Franklin A (1977) A quantitative histological assessment of cellular death, in relation to mitosis, in rat thymus during growth and age involution. Age Ageing 6: 77–84

    PubMed  CAS  Google Scholar 

  • Hirokawa K (1977) The thymus and aging. In: Makinodan T, Yunis E (eds) Immunology and aging. Plenum, New York, pp 51–72

    Google Scholar 

  • Hirokawa K (1978) Age-related changes of thymus-morphological and functional aspects. Acta Pathol Jpn 28: 843–857

    PubMed  CAS  Google Scholar 

  • Hirokawa K, Makinodan T (1975) Thymic involution: effect on T cell differentiation. J Immunol 114: 1659–1664

    PubMed  CAS  Google Scholar 

  • Hirokawa K, Albright JW, Makinodan T (1976) Restoration of impaired immune functions in aging animals. I. Effect of syngeneic thymus and bone marrow grafts. Clin Immunol Immunopathol 5: 371–376

    PubMed  CAS  Google Scholar 

  • Höhn EO (1959) Actions of certain hormones on the thymus of the domestic hen. J Endocrinol 19: 282–287

    Google Scholar 

  • Holliday R, Huschtscha LI, Kirkwood TBL (1981) Cellular aging: further evidence for the commitment theory. Science 213: 1505–1508

    PubMed  CAS  Google Scholar 

  • Ishidate M, Metcalf D (1963) The pattern of lymphopoiesis in the mouse after cortisone administration or adrenalectomy. Aust J Exp Biol Med Sci 41: 637–649

    PubMed  CAS  Google Scholar 

  • Jacobs PA, Brown WMG, Doll R (1961) Distribution of human chromosome counts in relation to age. Nature 191: 1178–1180

    PubMed  CAS  Google Scholar 

  • Jamil NAK, Millard RE (1981) Studies of T, B, and ‘null’ blood lymphocytes in normal persons of different age groups. Gerontology 27: 79–84

    PubMed  CAS  Google Scholar 

  • Jankovic BD, Waksman BH, Arnason BG (1962) Role of the thymus in immune reactions in rats. I. The immunologic response of bovine serum albumin (antibody formation, Arthus reactivity, and delayed hypersensitivity) in rats thymectomized or splenectomized at various times after birth. J Exp Med 116: 159–176

    PubMed  CAS  Google Scholar 

  • Janossy G, Thomas JA, Bollum FJ, Granger S, Pizzolo G, Bradstock KF, Wong L, McMichael A, Ganeshaguru K, Hoffbrand AV (1980) The human thymic microenvironment: an immunohistologic study. J Immunol 125: 202–212

    PubMed  CAS  Google Scholar 

  • Jeejeebhoy HF (1971) Decreased longevity of mice following thymectomy in adult life. Transplantation 12: 525–526

    PubMed  CAS  Google Scholar 

  • Joel DD, Chanana AD, Cronkhite EP (1974) Thymus cell migration. Ser Hematol 7: 414–471

    Google Scholar 

  • Joel DD, Chanana AD, Cottier H, Cronkhite EP, Laissue JA (1977) Fate of thymocytes: studies with 125I-iododeoxyuridine and 3H-thymidine in mice. Cell Tissue Kinet 10: 57–69

    PubMed  CAS  Google Scholar 

  • Johnson R, Strehler BL (1972) Loss of genes coding for ribosomal RNA in aging brain cells. Nature 240: 412–413

    PubMed  CAS  Google Scholar 

  • Joncourt F, Wang Y, Kristensen F, de Weck AL (1982) Aging and immunity: decrease in interleukin-2 production and interleukin-2-dependent RNA synthesis in lectin-stimulated murine spleen cells. Immunobiology 163: 521–526

    PubMed  CAS  Google Scholar 

  • Jordan RK, Robinson JH (1981) T lymphocyte differentiation. In: Kendall MD (ed) The thymus gland. Academic, London

    Google Scholar 

  • Kaiserling E, Stein H, Müller-Hermelink HK (1974) Interdigitating reticulum cells in the human thymus. Cell Tissue Res 155: 47–55

    PubMed  CAS  Google Scholar 

  • Kalimi M, Banerji A (1982) Age-related changes in the in vitro glucocorticoid responsiveness of rat spleen and splenic leucocytes. Gerontology 28: 91–98

    PubMed  CAS  Google Scholar 

  • Kay MMB (1979 a) Effect of age on human immunological parameters including T and B cell colony formation. In: Orimo, Shimada, Iriki, Maeda (eds) Recent advances in gerontology. Excerpta Medica, Amsterdam, pp 442–443

    Google Scholar 

  • Kay MMB (1979b) The thymus: clock for immunologic aging? J Invest Dermatol 73: 29–38

    Google Scholar 

  • Kay MMB, Makinodan T (1976) Immunbiology of aging: evaluation of current status. Clin Immunol Immunopathol 6: 394–414

    PubMed  CAS  Google Scholar 

  • Kay MMB, Makinodan T (1981) Relationship between aging and the immune system. Prog Allergy 29: 134–181

    PubMed  CAS  Google Scholar 

  • Kay MMB, Mendoza J, Diven J, Denton T, Union N, Lajiness M (1979) Age-related changes in the immune system of mice of 8 medium and long-lived strains and hybrids. I. Organ, cellular and activity change. Med Ageing Dev 11: 295–346

    CAS  Google Scholar 

  • Kendall MD (1981) Age and seasonal changes in the thymus. In: Kendall MD (ed) The thymus gland. Academic, London, pp 21–35

    Google Scholar 

  • Kendall MD, Johnson HRM, Singh J (1980) The weight of the human thymus gland at necropsy. J Anat 131: 484–499

    Google Scholar 

  • Kennes B, Hubert C, Brohee D, Neve P (1981) Early biochemical events associated with lymphocyte activation in ageing I. Evidence that Ca2+ dependent processes induced by PHA are impaired. Immunology 42: 119–126

    PubMed  CAS  Google Scholar 

  • Kerr JFR, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26: 239–257

    PubMed  CAS  Google Scholar 

  • Kessel RG, Kardon RH (1979) Tissues and organs. A text atlas of scanning electron microscopy. Freeman, San Francisco

    Google Scholar 

  • Kishimoto S, Mitsuya H (1980) Immunosenescence and defense mechanisms. Asian Med J 23: 558–570

    Google Scholar 

  • Kishimoto S, Tomino S, Inomata K et al. (1978) Age-related changes in the subsets and functions of human T lymphocytes. J Immunol 121: 1773–1780

    PubMed  CAS  Google Scholar 

  • Kishimoto S, Tomino S, Mitsuya H, Fujiwara H (1979) Age-related changes in suppressor functions of human T cells. J Immunol 123: 1586–1593

    PubMed  CAS  Google Scholar 

  • Kristensen F, Walker C, Bettens F, Joncourt F, de Weck AL (1982) Assessment of interleukin 1 and interleukin 2 effects on cycling and noncycling muring thymocytes. Cell Immunol 74: 140–149

    PubMed  CAS  Google Scholar 

  • Krogsrud RL, Perkins EH (1977) Age-related changes in T cell function. J Immunol 118: 1607–1611

    PubMed  CAS  Google Scholar 

  • Leblond CP (1959) Classic technics for the study of the kinetics of cellular proliferation. In: Stohlman F (ed) Kinetics of cellular proliferation. Grune and Stratton, New York, p 31

    Google Scholar 

  • Lederman HM, Lee JWW, Price GB, Gelfand EW (1983) Growth and characterization of T cell colonies from human thymus. J Immunol 130: 45–50

    PubMed  CAS  Google Scholar 

  • Leech SH (1980) Cellular immunosenescence. Gerontology 26: 330–345

    PubMed  CAS  Google Scholar 

  • Lennert K (1978) Methodologic prerequisites for a differential diagnosis of lymphomas. In: Lennert K, Mohri N, Stein H, Kaiserling E, Müller-Hermelink HK (eds) Malignant lymphomas other than Hodgkin’s disease. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Lennert K, Kaiserling E, Müller-Hermelink HK (1978) Malignant lymphomas: models of differentiation and cooperation of lymphoreticular cells. In: Clarkson BD, Marks PA, Till J (eds) Differentiation of normal and neoplastic hematopoietic cells. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 897–913

    Google Scholar 

  • Lewis VM, Twomey JJ, Bealmear P, Goldstein G, Good RA (1978) Age, thymic involution and circulating thymic hormone activity. J Clin Endocrinol Metab 47: 145–150

    PubMed  CAS  Google Scholar 

  • Luscieti P, Hubschmid T, Cottier H et al. (1980) Human lymph node morphology as a function of age and site. J Clin Pathol 33: 454–461

    PubMed  CAS  Google Scholar 

  • Mackay IR (1972) Ageing and immunological function in man. Gerontologia 18: 285–304

    PubMed  CAS  Google Scholar 

  • Mackay IR, Whittingham SF, Mathews JD (1977) The immunoepidemiology of aging. In: Makinodan T, Yunis E (eds) Immunology and aging. Plenum, New York, pp 35–49

    Google Scholar 

  • Maizel AL, Mehta SR, Ford RJ, Lachman LB (1981) Effect of interleukin 1 on human thymocytes and purified human T cells. J Exp Med 153: 470–475

    PubMed  CAS  Google Scholar 

  • Makinodan T (1980) Role of the immune system in aging. Adv Exp Med Biol 129: 213–231

    PubMed  CAS  Google Scholar 

  • Makinodan T, Yunis E (eds) (1977) Immunology and aging. Plenum, New York

    Google Scholar 

  • Makinodan T, Perkins EH, Chen MG (1971) Immunologic activity of the aged. Adv Gerontological Res 3: 171–198

    CAS  Google Scholar 

  • Mascart-Lemone F, Delespesse G, Servais G, Kunstler M (1982) Characterization of immunoregulatory T lymphocytes during aging by monoclonal antibodes. Clin Exp Immunol 48: 148–154

    PubMed  CAS  Google Scholar 

  • Meier G, Nelins D, Stobbe H (1975) Erfassung altersabhängiger Unterschiede der zellulären Immunität mittels der Dinitrochlorbenzol-Epikutantests. ZFA 29: 285–289

    CAS  Google Scholar 

  • Mertelsmann R (1981) Leukämien und maligne Lymphome: Phänotypische und pathophysiologische Untersuchungen und ihre klinische Bedeutung. Thieme, Stuttgart

    Google Scholar 

  • Mertelsmann R, Gillis S, Steinmann G, Ralph P, Stiehm M, Koziner B, Moore MA (1981) T-cell growth factor (interleukin 2) and terminal transferase activity in human leukemias and lymphoblastic cell lines. Blut 43: 99–103

    PubMed  CAS  Google Scholar 

  • Miller JFAP (1961) Immunological function of the thymus. Lancet 2: 748–749

    PubMed  CAS  Google Scholar 

  • Miller JFAP (1965) Effect of thymectomy in adult mice on immunological responsiveness. Nature 208: 1337–1338

    PubMed  CAS  Google Scholar 

  • Moore AV, Korobkin M, Olanow W, Heaston DK, Ram PC, Dunnick NR, Silverman PM (1983) Age-related changes in the thymus gland. CT-pathologic correlation. AJR 141:291

    Google Scholar 

  • Mosier DE (1974) Ontogeny of mouse lymphocyte function. I. Paradoxical elevation of reactivity to allogeneic cells and phytohaemagglutinin in Balb/c foetal thymocytes. J Immunol 112: 305–310

    PubMed  CAS  Google Scholar 

  • Müller-Hermelink HK, Gaudecker B von (1980) Ontogenese des lymphatischen Systems beim Menschen. Verh Anat Ges 74: 235–259

    Google Scholar 

  • Müller-Hermelink HK, Steinmann GG, Stein H (1982 a) Structural and functional alterations of the aging human thymus. Adv Exp Med Biol 149: 303–312

    PubMed  Google Scholar 

  • Müller-Hermelink HK, Steinmann GG, Gaudecker B von (1982b) Histogenesis of T cells. In: Goos M, Christophers E (eds) Lymphoproliferative diseases of the skin. Springer, Berlin Heidelberg New York, pp 16–24

    Google Scholar 

  • Murray RG, Murray AS, Pizzo A (1965 a) The fine structure of mitosis in rat thymic lymphocytes. J Cell Biol 26: 601–619

    PubMed  CAS  Google Scholar 

  • Murray RG, Murray A, Pizzo A (1965 b) The fine structure of the thymocytes of young rats. Anat Rec 151: 17–40

    PubMed  CAS  Google Scholar 

  • Nakamura K, Metcalf D (1961) Quantitative cytological studies on thymic lymphoid cells in normal, preleukaemic, and leukaemic mice. Br J Cancer 15: 306–315

    PubMed  CAS  Google Scholar 

  • Nakamura K, Yoshii A, Akahoshi T, Kashiwazaki S, Kawakami M (1982) Regulation of macrophage phagocytosis of syngeneic erythrocytes by T-cell subsets from NZB mice: differential effects of T cells from young and old mice. Immunol 46: 561–573

    CAS  Google Scholar 

  • Ogden DA, Micklem HS (1976) The fate of serially transplanted bone marrow cell populations from young and old clonors. Transplantation 22: 287–293

    PubMed  CAS  Google Scholar 

  • Oh YH, Conard RA (1972) Effect of aging on acetate incorporation in nuclei of lymphocytes stimulated with phytohemagglutinin. Life Sci 11: 677–684

    CAS  Google Scholar 

  • Olsson L, Claesson MH (1973) Studies on subpopulations of theta-bearing lymphoid cells. Nature [New Biol] 244: 50–51

    CAS  Google Scholar 

  • Onsrud M (1981) Age dependent changes in some human lymphocyte sub-populations. Changes in natural killer cell activity. Acta Pathol Microbiol Scand [C] 89: 55–62

    CAS  Google Scholar 

  • Oosterom R, Kater L (1981a) The thymus in the aging individual. I. Mitogen responsiveness of human thymocytes. Clin Immunol Immunopathol 18: 187–194

    PubMed  CAS  Google Scholar 

  • Oosterom R, Kater L (1981b) The thymus in the aging individual. II. Thymic epithelial function in vitro in aging and in thymus pathology. Clin Immunol Immunopathol 18: 195–202

    PubMed  CAS  Google Scholar 

  • Orgel LE (1963) The maintenance of the accuracy of protein synthesis and its relevance to ageing. Proc Natl Acad Sci USA 49: 517–521

    PubMed  CAS  Google Scholar 

  • Orgel LE (1973) Ageing of clones of mammalian cells. Nature 243: 441–445

    PubMed  CAS  Google Scholar 

  • Owen JJT, Raff MC (1970) Studies on differentiation of thymus derived lymphocyte. J Exp Med 132: 1216–1232

    PubMed  CAS  Google Scholar 

  • Pahwa RN, Modak MJ, McMorrow T, Pahwa S, Fernandes G, Good RA (1981) Terminal deoxynucleotidyl transferase (TdT) enzyme in thymus and bone marrow. I. Age associated decline of TdT in humans and mice. Cell Immunol 58: 39–48

    PubMed  CAS  Google Scholar 

  • Papiernik M (1972) Correlation of lymphocyte transformation and morphology in the human fetal thymus. Blood 36: 470–479

    Google Scholar 

  • Papiernik M, Laroche L (1982) Thymic medullary lymphocytes. I. Lymphokines produced by thymic medullary lymphocytes as a second signal for intrathymic stem cell homing. Cell Immunol 66: 233–239

    PubMed  CAS  Google Scholar 

  • Pazmino NH, Ihle JN (1976) Strain-, age-, and tumor-dependent distribution of terminal deoxynucleotidyl transferase in thymocytes of mice. J Immunol 117: 620–625

    PubMed  CAS  Google Scholar 

  • Pazmino NH, Ihle JN, Goldstein AL (1978) Induction in vivo and in vitro of terminal deoxynucleotidyl transferase by thymosin in bone marrow cells from athymic mice. J Exp Med 147: 708–718

    PubMed  CAS  Google Scholar 

  • Pawelec G, Schneider EM, Rehbein A, Schaa I, Wernet P (1983) Age-related loss of function of alloactivated interleukin 2-propagated human primed lymphocyte typing clones. Scand J Immunol 17: 147–153

    PubMed  CAS  Google Scholar 

  • Perkins EH, Cacheiro LH (1977) A multiple-parameter comparison of immunocompentence and tumor resistance in aged BALB/C mice. Mech Ageing Dev 6: 15–24

    PubMed  CAS  Google Scholar 

  • Piantelli M, Lauriola L, Maggiano N, Ranalletti FO, Musiani P (1981) Role of interleukins 1 and 2 on human thymocyte mitogen activation. Cell Immunol 64: 337–349

    PubMed  CAS  Google Scholar 

  • Pierpaoli W, Sorkin E (1968) Effect of gonadectomy on the peripheral lymphatic tissue of neonatally thymectomized mice. Br J Exp Pathol 49: 288–293

    PubMed  CAS  Google Scholar 

  • Popp DM (1977) Qualitative changes in immunocompetent cells with age: reduced sensitivity to cortisone acetate. Mech Ageing Dev 6: 355–362

    PubMed  CAS  Google Scholar 

  • Preumont AM, Gänsen P van, Brächet J (1978) Cytochemical study of human lymphocytes stimulated by PHA in function of donor age. Mech Ageing Dev 7: 25–32

    PubMed  CAS  Google Scholar 

  • Price GB, Makinodan T (1972a) Immunologic deficiencies. I. Characterization of intrinsic deficiencies. J Immunol 108: 403–412

    PubMed  CAS  Google Scholar 

  • Price GB, Makinodan T (1972 b) Immunologic deficiencies. II. Characterization of extrinsic deficiencies. J Immunol 108: 413–417

    PubMed  CAS  Google Scholar 

  • Rao KMK, Schwartz SA, Good RA (1979) Age-dependent effects of zinc to the transformation response of human lymphocytes to mitogen. Cell Immunol 42: 270–278

    PubMed  CAS  Google Scholar 

  • Raso M (1941) Beitrag zu Studien der Gewichtsverhältnisse des Thymen von Feten und Neugeborenen. Zentralbl Kinderheilkd 38: 67 (abstract)

    Google Scholar 

  • Reinherz EL, Schlossman SF (1980) The differentiation and function of human T lymphocytes. Cell 19: 821–827

    PubMed  CAS  Google Scholar 

  • Robinson JH, Owen JJT (1976) Generation of T-cell function in organ culture of foetal mouse thymus. I. Mitogen responsiveness. Clin Exp Immunol 23: 347–354

    Google Scholar 

  • Rosenkoetter M, Antel JP, Oger JJF (1983) Modulation of lymphocyte differentiation antigens: influence of aging. Cell Immunol 77: 395–401

    PubMed  CAS  Google Scholar 

  • Ross MH (1961) Length of life and nutrition in the rat. J Nutr 75: 197–210

    PubMed  CAS  Google Scholar 

  • Rothenberg E (1982) A specific biosynthetic marker for immature thymic lymphoblasts. Active synthesis of thymus-leukemia-antigen restricted to proliferating cells. J Exp Med 155: 140–154

    PubMed  CAS  Google Scholar 

  • Sainte-Marie G, Leblond LP (1964) Thymus cell population dynamics. In: Good RA, Gabrielson AE (eds) The thymus in immunobiology. Harper and Row, New York

    Google Scholar 

  • Sainte-Marie G, Peng FS (1974) Distribution of transferred mature thymocytes of the rat. Rev Can Biol 33: 61–65

    PubMed  CAS  Google Scholar 

  • Scammon RE (1927) The prenatal growth of the human thymus. Proc Soc Exp Biol Med 24: 906–909

    Google Scholar 

  • Schulof RS, Garofalo JA, Good RA, Gupta S (1980) Concanavalin A-induced suppressor cell activity for T-cell proliferative responses: autologous and allogeneic suppression in aging humans. Cell Immunol 56: 80–88

    PubMed  CAS  Google Scholar 

  • Selye H (1936) Thymus and adrenals in the response of the organism to injuries and intoxications. Br J Exp Pathol 17: 234–248

    CAS  Google Scholar 

  • Shisa H, Nishizuka Y (1971) Determining role of age and thymus in pathology of 7, 12-dimethylbenz (α) anthracene-induced leukemia in mice. Gann 62: 407–412

    PubMed  CAS  Google Scholar 

  • Shortman K, Jackson H (1974) The differentiation of T lymphocytes. I. Proliferation kinetics and interrelationships of subpopulations of mouse thymus cells. Cell Immunol 12: 230–246

    PubMed  CAS  Google Scholar 

  • Silverstone AE, Cantor H, Goldstein G, Baltimore D (1976) Terminal deoxynucleotidyl transferase is found in prothymocytes. J Exp Med 144: 543–548

    PubMed  CAS  Google Scholar 

  • Simpson JG, Gray ES, Beck JS (1975) Age involution in the normal adult thymus. Clin Exp Immunol 19: 261–265

    PubMed  CAS  Google Scholar 

  • Sloan HE (1943) The thymus in myasthenia gravis with observations on the normal anatomy and histology of the thymus. Surgery 13: 154–174

    Google Scholar 

  • Smith SM, Ossa-Gomez LJ (1981) A quantitative histologic comparison of the thymus in 100 healthy and diseased adults. Am J Clin Pathol 76: 657–665

    PubMed  CAS  Google Scholar 

  • Soffer LJ, Gabricoue JL, Wolf BS (1952) Effects of ACTH on thymic masses. J Clin Endocrinol 12:690

    Google Scholar 

  • Sone S, Higashihara T, Morimoto S (1980) Normal anatomy of the thymus and anterior mediastinum by pneumomediastinography. AJR 134: 81–89

    PubMed  CAS  Google Scholar 

  • Staiano-Coico L, Darzynkiewicz Z, Hefton JM, Dutkowski R, Darlington GJ, Weksler ME (1983) Increased sensitivity of lymphocytes from people over 65 to cell cycle arrest and chromosomal damage. Science 219: 1335–1337

    PubMed  CAS  Google Scholar 

  • Steinhagen-Thiessen E, Hilz H (1979) Aldolase activity and cross-reacting material in lymphocytes of aged individuals. Gerontology 25: 132–135

    PubMed  CAS  Google Scholar 

  • Steinmann GG (1984) Altersveränderungen des menschlichen Thymus. Habilitationsschrift. Faculty of medicine, University of Kiel

    Google Scholar 

  • Steinmann GG, Müller-Hermelink HK (1983) Darstellung der terminalen Deoxynucleotidyl-Transferase im histologischen Schnitt. Klin Padiat 195: 230–233

    CAS  Google Scholar 

  • Steinmann GG, Müller-Hermelink HK (1984 a) Immunohistological demonstration of terminal transferase (TdT) in the age-involuted human thymus. Immunobiology 126: 45–52

    Google Scholar 

  • Steinmann GG, Müller-Hermelink HK (1984 b) Lymphocyte differentiation and its microenvironment in human thymus during aging. Monogr Dev Biol 17: 142–155

    PubMed  CAS  Google Scholar 

  • Steinmann GG, Mertelsmann R, Evans RL, Moore MAS (1981 a) T cell growth factor (TCGF = interleukin 2) production of human lymphocyte subsets as selected by panning with monoclonal antibodies. Exp Hematol 9:23 (abstract)

    Google Scholar 

  • Steinmann GG, Mertelsmann R, Harven E de, Moore MAS (1981b) Ultrastructural demonstration of terminal deoxynucleotidyl transferase (TdT). Blood 57: 368–371

    PubMed  CAS  Google Scholar 

  • Steinmann GG, Broxmeyer HE, Harven E de, Moore MAS (1982 a) Immuno-electron microscopic tracing of lactoferrin, a regulator of myelopoiesis, into a subpopulation of human peripheral blood monocytes. Br J Haematol 50: 75–84

    PubMed  CAS  Google Scholar 

  • Steinmann GG, Földi E, Földi M, Râcz P, Lennert K (1982 b) Morphological findings in lymph nodes after occlusion of their efferent lymphatic vessels and veins. Lab Invest 47: 43–50

    PubMed  CAS  Google Scholar 

  • Steinmann GG, Conlon P, Hefeneider S, Gillis S (1983 a) Serological visualization of interleukin 2. Science 220: 1188–1190

    PubMed  CAS  Google Scholar 

  • Steinmann GG, Hefeneider SH, Conlon PJ, Gillis S (1983b) Identification of interleukin 2 producer and responder T lymphocyte subpopulations by immunoperoxidase staining. Exp Hematol 11: 34 (abstract)

    Google Scholar 

  • Steinmann GG, Klaus B, Müller-Hermelink HK (1985) The involution of the aging human thymic epithelium is independent of puberty. A morphometric study. Scand J Immunol (in press)

    Google Scholar 

  • Stjernsward J (1966) Age-dependent tumor-host barrier and effect of carcinogen-initiated immunode-pression of rejection of isografted methyldiolantrene-induced sarcoma cells. J Natl Cancer Inst 37: 505–512

    PubMed  CAS  Google Scholar 

  • Stutman O, Yunis EJ, Good RA (1968) Deficient immunologic functions of NZB mice. Proc Soc Exp Biol Med 127: 1204–1207

    PubMed  CAS  Google Scholar 

  • Tarn CF, Walford RL (1980) Alterations in cyclic nucleotides and cyclase-specific activities in T-lymphocytes of aging normal humans and patients with Down’s syndrome. J Immunol 125: 1665–1670

    Google Scholar 

  • Täkhä H (1951) The weight of the thymus in children of 0-2 years of age. Acta Paediatr Scand 40: 469–485

    Google Scholar 

  • Thoman ML, Weigle WO (1981) Lymphokines and aging: interleukin-2 production and activity in aged animals. J Immunol 127: 2102–2106

    PubMed  CAS  Google Scholar 

  • Thoman ML, Weigle WO (1982) Cell-mediated immunity in aged mice: an underlying lesion in IL 2 synthesis. J Immunol 128: 2358–2361

    PubMed  CAS  Google Scholar 

  • Tice RR, Schneider EL, Kram D, Thorne P (1979) Cytokinetic analysis of the impaired proliferative response of peripheral lymphocytes from aged humans to phytohemagglutinin. J Exp Med 149: 1029–1041

    PubMed  CAS  Google Scholar 

  • Tosi P, Kraft R, Luzi P, Cintorino M, Fankhäuser G, Hess MW, Cottier H (1982) Involution patterns of the human thymus. I. Size of the cortical area as a function of age. Clin Exp Immunol 47: 497–504

    PubMed  CAS  Google Scholar 

  • Tyan ML (1976) Impaired thymic regeneration in lethally irradiated mice given bone marrow from aged donors. Proc Soc Exp Biol Med 152: 33–35

    PubMed  CAS  Google Scholar 

  • Tyan ML (1977) Age-related decrease in mouse T cell progenitors. J Immunol 118: 846–851

    PubMed  CAS  Google Scholar 

  • van de Griend RJ, Carzeno M, Doom R van, Lempers CJM, Ende A van den, Wijermans P, Oosterhuis HJGH, Astaldi A (1982) Changes in human T lymphocytes after thymectomy and during senescence. J Clin Immunol 2: 289–295

    PubMed  Google Scholar 

  • von Gaudecker B (1977) Die fortschreitende Erweiterung mesodermaler perivaskulärer Räume im Thymus des Menschen. Verh Anat Ges 71: 783–787

    Google Scholar 

  • von Gaudecker B (1978) Ultrastructure of the age-involuted adult human thymus. Cell Tissue Res 186: 507–525

    Google Scholar 

  • Waldorf DS, Wilkens RF, Decker JL (1968) Impaired delayed hypersensitivity in an aging population. Association with antinuclear reactivity and rheumatoid factor. JAMA 203: 831–834

    PubMed  CAS  Google Scholar 

  • Walford RL (1969) The immunologic theory of aging. Munksgaard, Copenhagen

    Google Scholar 

  • Walford RL (1980) Immunology and aging. Philip Levine Award. Am J Clin Pathol 74: 247–253

    PubMed  CAS  Google Scholar 

  • Weindruch RH, Suffin SC (1980) Quantitative histologic effects on mouse thymus of controlled dietary restriction. J Gerontol 35: 525–531

    PubMed  CAS  Google Scholar 

  • Weissman IL, Rouse RV, Kyewski BA, Lepaut F, Butcher EC, Kaplan HS, Scollay RG (1982) Thymic lymphocyte maturation in the thymic microenvironment. Behring Inst Mitt 70: 242–251

    Google Scholar 

  • Wekerle H, Ketelsen UP, Ernst M (1980) Thymic nurse cells. Lymphoepithelial cell complexes in murine thymuses: morphological and serological characterization. J Exp Med 151: 925–944

    PubMed  CAS  Google Scholar 

  • Weksler ME (1980) The immune system and the aging process in man. Proc Soc Exp Biol Med 165: 200–205

    PubMed  CAS  Google Scholar 

  • Weksler ME, Innes JB, Goldstein G (1978) Immunologic studies of aging. IV. The contribution of thymic involution to the immune deficiencies of aging mice and reversal with thymopoietin. J Exp Med 148: 996–1006

    PubMed  CAS  Google Scholar 

  • Wijermans P, Astaldi A (1978) Effect of aging on thymus-dependent serum factor(s). Ned Tijdschr Gerontol 9: 216–219

    Google Scholar 

  • Williams RM, Kraus LJ, Hallgren HM, Yunis EJ (1980) Aging, immunogenetics and cellular immunity. In: Borek C, Fenoglio CM, King DW (eds) Aging, cancer and cell membranes. Thieme, Stuttgart, pp 169–186 (Adv Pathobiology vol 7)

    Google Scholar 

  • Wyllie AH (1981) Cell death: a new classification separating apoptosis from necrosis. In: Bowen ID, Lockshin RA (eds) Cell death in biology and pathology. Chapman and Hall, London, pp 9–34

    Google Scholar 

  • Young M, Turnbull HM (1931) An analysis of the data collected by the status lymphaticus investigation committee. J Pathol Bacteriol 34: 213–258

    Google Scholar 

  • Yunis EJ, Fernandes G, Smith J, Stutman O, Good RA (1973) Involution of the thymus dependent lymphoid system. In: Jankovic BD, Isakovic K (eds) Microenvironmental aspects of immunity. Plenum, New York

    Google Scholar 

  • Yunis EJ, Fernandes G, Good RA (1978) Aging and involution of the immunological apparatus. In: Twomey JJ, Good RA (eds) The immunpathology of lymphoreticular neoplasms. Plenum, New York, pp 53–80

    Google Scholar 

  • Zinkernagel RM, Callaham GN, Althage A, Cooper S, Klein PA, Klein J (1978) On the thymus in the differentiation of “H-2 self-recognition” by T cells: evidence for dual recognition? J Exp Med 147: 882–896

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Steinmann, G.G. (1986). Changes in the Human Thymus During Aging. In: Müller-Hermelink, H.K. (eds) The Human Thymus. Current Topics in Pathology, vol 75. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82480-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82480-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-82482-1

  • Online ISBN: 978-3-642-82480-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics