Skip to main content

Advertisement

Log in

Intercellular Cross-Talk Among Bone Cells: New Factors and Pathways

  • Skeletal Biology (D Burr, Section Editor)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Intercellular communication within the bone microenvironment is critical for the maintenance of normal bone structure. Osteoblast-lineage cells at all stages of differentiation, from pluripotent precursors to matrix-embedded osteocytes, produce regulatory factors that modulate the differentiation and activity of both bone-forming osteoblasts and bone-resorbing osteoclasts. Osteoclasts can also release factors that feed back to regulate osteoblast activity. Intercellular cross-talk within the bone microenvironment is not restricted only to these bone cells. Other cells within the bone marrow microenvironment, including adipocytes, T cells, and macrophages, play key roles that influence the processes of bone formation and resorption. This review discusses recent work that provides new insights into some of these communication networks and the factors involved, including osteocytic production of receptor activator of nuclear factor-κB ligand (RANKL) and sclerostin, osteoblastic production of interleukin-33, osteoclast-derived Semaphorin 4D, ephrin signaling, and signals from T helper cells and resident osteal macrophages (osteomacs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Manolagas SC. Cell number versus cell vigor–what really matters to a regenerating skeleton? Endocrinology. 1999;140:4377–81.

    Article  PubMed  CAS  Google Scholar 

  2. Sims NA, Gooi JH. Bone remodeling: multiple cellular interactions required for coupling of bone formation and resorption. Semin Cell Dev Biol. 2008;19:444–51.

    Article  PubMed  CAS  Google Scholar 

  3. Crockett JC, Rogers MJ, Coxon FP, Hocking LJ, Helfrich MH. Bone remodelling at a glance. J Cell Sci. 2011;124:991–8.

    Article  PubMed  CAS  Google Scholar 

  4. Frost HM. Presence of microscopic cracks in vivo in bone. Henry Ford Med Bull. 1960;8:27–35.

    Google Scholar 

  5. Tanaka K, Yamaguchi Y, Hakeda Y. Isolated chick osteocytes stimulate formation and bone-resorbing activity of osteoclst-like cells. J Bone Miner Metab. 1995;13:61–70.

    Article  Google Scholar 

  6. Verborgt O, Gibson GJ, Schaffler MB. Loss of osteocyte integrity in association with microdamage and bone remodeling after fatigue in vivo. J Bone Miner Res. 2000;15:60–7.

    Article  PubMed  CAS  Google Scholar 

  7. Noble BS, Stevens H, Loveridge N, Reeve J. Identification of apoptotic changes in osteocytes in normal and pathological human bone. Bone. 1997;20:273–82.

    Article  PubMed  CAS  Google Scholar 

  8. Tomkinson A, Reeve J, Shaw RW, Noble BS. The death of osteocytes via apoptosis accompanies estrogen withdrawal in human bone. J Clin Endocrinol Metab. 1997;82:3128–35.

    Article  PubMed  CAS  Google Scholar 

  9. Tatsumi S, Ishii K, Amizuka N, et al. Targeted ablation of osteocytes induces osteoporosis with defective mechanotransduction. Cell Metab. 2007;5:464–75.

    Article  PubMed  CAS  Google Scholar 

  10. Cardoso L, Herman BC, Verborgt O, Laudier D, Majeska RJ, Schaffler MB. Osteocyte apoptosis controls activation of intracortical resorption in response to bone fatigue. J Bone Miner Res. 2009;24:597–605.

    Article  PubMed  CAS  Google Scholar 

  11. Herman BC, Cardoso L, Majeska RJ, Jepsen KJ, Schaffler MB. Activation of bone remodeling after fatigue: differential response to linear microcracks and diffuse damage. Bone. 2010;47:766–72.

    Article  PubMed  CAS  Google Scholar 

  12. Zhao S, Zhang YK, Harris S, Ahuja SS, Bonewald LF. MLO-Y4 osteocyte-like cells support osteoclast formation and activation. J Bone Miner Res. 2002;17:2068–79.

    Article  PubMed  CAS  Google Scholar 

  13. Al-Dujaili SA, Lau E, Al-Dujaili H, Tsang K, Guenther A, You L. Apoptotic osteocytes regulate osteoclast precursor recruitment and differentiation in vitro. J Cell Biochem. 2011;112:2412–23.

    Article  PubMed  CAS  Google Scholar 

  14. Shandala T, Ng YS, Hopwood B, Yip YC, Foster BK, Xian CJ. The role of osteocyte apoptosis in cancer chemotherapy-induced bone loss. J Cell Physiol. 2012. doi:10.1002/jcp.23034.

  15. Aguirre JI, Plotkin LI, Stewart SA, et al. Osteocyte apoptosis is induced by weightlessness in mice and precedes osteoclast recruitment and bone loss. J Bone Miner Res. 2006;21:605–15.

    Article  PubMed  Google Scholar 

  16. Cheung WY, Liu C, Tonelli-Zasarsky RM, Simmons CA, You L. Osteocyte apoptosis is mechanically regulated and induces angiogenesis in vitro. J Orthop Res. 2011;29:523–30.

    Article  PubMed  Google Scholar 

  17. Cheung WY, Simmons CA, You L. Osteocyte apoptosis regulates osteoclast precursor adhesion via osteocytic IL-6 secretion and endothelial ICAM-1 expression. Bone. 2012;50:104–10.

    Article  PubMed  CAS  Google Scholar 

  18. Varoga D, Drescher W, Pufe M, Groth G, Pufe T. Differential expression of vascular endothelial growth factor in glucocorticoid-related osteonecrosis of the femoral head. Clin Orthop Relat Res. 2009;467:3273–82.

    Article  PubMed  Google Scholar 

  19. Poulton IJ, McGregor NE, Pompolo S, Walker EC, Sims NA. Contrasting roles of LIF in murine bone development and remodeling involve region-specific changes in vascularization. J Bone Miner Res. 2012;27:586–595. doi:10.1002/jbmr.485.

    Google Scholar 

  20. Kartsogiannis V, Zhou H, Horwood NJ, et al. Localization of RANKL (receptor activator of NF kappa B ligand) mRNA and protein in skeletal and extraskeletal tissues. Bone. 1999;25:525–34.

    Article  PubMed  CAS  Google Scholar 

  21. Silvestrini G, Ballanti P, Patacchioli F, et al. Detection of osteoprotegerin (OPG) and its ligand (RANKL) mRNA and protein in femur and tibia of the rat. J Mol Histol. 2005;36:59–67.

    Article  PubMed  CAS  Google Scholar 

  22. Mueller RJ, Richards RG. Immunohistological identification of receptor activator of NF-kappaB ligand (RANKL) in human, ovine and bovine bone tissues. J Mater Sci Mater Med. 2004;15:367–72.

    Article  PubMed  CAS  Google Scholar 

  23. • Nakashima T, Hayashi M, Fukunaga T, et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med. 2011;17:1231–4. Published simultaneously with Xiong et al. [24•], this study identifies osteocyte-produced RANKL as playing a key role in regulating osteoclast differentiation in vitro and in vivo using mouse models in which RANKL has been deleted using DMP1-Cre transgene.

    Article  PubMed  CAS  Google Scholar 

  24. • Xiong J, Onal M, Jilka RL, Weinstein RS, Manolagas SC, O’Brien CA. Matrix-embedded cells control osteoclast formation. Nat Med. 2011;17:1235–41. Published simultaneously with Nakashima et al. [23•], this study identifies chondrocyte and osteocyte-derived RANKL as critical mediators of bone resorption, and therefore bone mass in vivo using osteoblast-lineage–specific Cre-RANKL knockout mouse models.

    Article  PubMed  CAS  Google Scholar 

  25. Takahashi N, Akatsu T, Udagawa N, et al. Osteoblastic cells are involved in osteoclast formation. Endocrinology. 1988;123:2600–2.

    Article  PubMed  CAS  Google Scholar 

  26. Kogianni G, Mann V, Noble BS. Apoptotic bodies convey activity capable of initiating osteoclastogenesis and localised bone destruction. J Bone Miner Res. 2008;23:915–27.

    Article  PubMed  Google Scholar 

  27. Kamioka H, Honjo T, Takano-Yamamoto T. A three-dimensional distribution of osteocyte processes revealed by the combination of confocal laser scanning microscopy and differential interference contrast microscopy. Bone. 2001;28:145–9.

    Article  PubMed  CAS  Google Scholar 

  28. Wijenayaka AR, Kogawa M, Lim HP, Bonewald LF, Findlay DM, Atkins GJ. Sclerostin stimulates osteocyte support of osteoclast activity by a RANKL-dependent pathway. PLoS One. 2011;6:e25900.

    Article  PubMed  CAS  Google Scholar 

  29. Neuman WF, Neuman MW, Sammon PJ, Casarett GW. The metabolism of labeled parathyroid hormone. IV. Autoradiographic studies. Calcif Tissue Res. 1975;18:263–70.

    Article  PubMed  CAS  Google Scholar 

  30. Davideau JL, Papagerakis P, Hotton D, Lezot F, Berdal A. In situ investigation of vitamin D receptor, alkaline phosphatase, and osteocalcin gene expression in oro-facial mineralized tissues. Endocrinology. 1996;137:3577–85.

    Article  PubMed  CAS  Google Scholar 

  31. Walker EC, McGregor NE, Poulton IJ, et al. Oncostatin M promotes bone formation independently of resorption when signaling through leukemia inhibitory factor receptor in mice. J Clin Invest. 2010;120:582–92.

    Article  PubMed  CAS  Google Scholar 

  32. Gooi JH, Pompolo S, Karsdal MA, et al. Calcitonin impairs the anabolic effect of PTH in young rats and stimulates expression of sclerostin by osteocytes. Bone. 2010;46:1486–97.

    Article  PubMed  CAS  Google Scholar 

  33. Saleh H, Eeles D, Hodge JM, et al. Interleukin-33, a target of parathyroid hormone and oncostatin m, increases osteoblastic matrix mineral deposition and inhibits osteoclast formation in vitro. Endocrinology. 2011;152:1911–22.

    Article  PubMed  CAS  Google Scholar 

  34. Schulze J, Bickert T, Beil FT, et al. Interleukin-33 is expressed in differentiated osteoblasts and blocks osteoclast formation from bone marrow precursor cells. J Bone Miner Res. 2011;26:704–17.

    Article  PubMed  CAS  Google Scholar 

  35. Keller H, Kneissel M. SOST is a target gene for PTH in bone. Bone. 2005;37:148–58.

    Article  PubMed  CAS  Google Scholar 

  36. Keller J, Catala-Lehnen P, Wintges K, et al. Transgenic over-expression of interleukin-33 in osteoblasts results in decreased osteoclastogenesis. Biochem Biophys Res Commun. 2012;417:217–22.

    Article  PubMed  CAS  Google Scholar 

  37. Martin TJ, Sims NA. Osteoclast-derived activity in the coupling of bone formation to resorption. Trends Mol Med. 2005;11:76–81.

    Article  PubMed  CAS  Google Scholar 

  38. Walker EC, McGregor NE, Poulton IJ, et al. Cardiotrophin-1 is an osteoclast-derived stimulus of bone formation required for normal bone remodeling. J Bone Miner Res. 2008;23:2025–32.

    Article  PubMed  CAS  Google Scholar 

  39. Bougeret C, Mansur IG, Dastot H, et al. Increased surface expression of a newly identified 150-kDa dimer early after human T lymphocyte activation. J Immunol. 1992;148:318–23.

    PubMed  CAS  Google Scholar 

  40. Hall KT, Boumsell L, Schultze JL, et al. Human CD100, a novel leukocyte semaphorin that promotes B-cell aggregation and differentiation. Proc Natl Acad Sci U S A. 1996;93:11780–5.

    Article  PubMed  CAS  Google Scholar 

  41. Kumanogoh A, Watanabe C, Lee I, et al. Identification of CD72 as a lymphocyte receptor for the class IV semaphorin CD100: a novel mechanism for regulating B cell signaling. Immunity. 2000;13:621–31.

    Article  PubMed  CAS  Google Scholar 

  42. Tamagnone L, Artigiani S, Chen H, et al. Plexins are a large family of receptors for transmembrane, secreted, and GPI-anchored semaphorins in vertebrates. Cell. 1999;99:71–80.

    Article  PubMed  CAS  Google Scholar 

  43. Basile JR, Barac A, Zhu T, Guan KL, Gutkind JS. Class IV semaphorins promote angiogenesis by stimulating Rho-initiated pathways through plexin-B. Cancer Res. 2004;64:5212–24.

    Article  PubMed  CAS  Google Scholar 

  44. Basile JR, Afkhami T, Gutkind JS. Semaphorin 4D/plexin-B1 induces endothelial cell migration through the activation of PYK2, Src, and the phosphatidylinositol 3-kinase-Akt pathway. Mol Cell Biol. 2005;25:6889–98.

    Article  PubMed  CAS  Google Scholar 

  45. • Negishi-Koga T, Shinohara M, Komatsu N, et al. Suppression of bone formation by osteoclastic expression of semaphorin 4D. Nat Med. 2011;17:1473–80. This study identifies an osteosclerotic bone phenotype in female mice lacking Sema4D expression. The authors show that Sema4D is a potential osteoclast-derived factor that acts on osteoblasts to inhibit their differentiation and function.

    Article  PubMed  CAS  Google Scholar 

  46. • Dacquin R, Domenget C, Kumanogoh A, Kikutani H, Jurdic P, Machuca-Gayet I. Control of bone resorption by semaphorin 4D is dependent on ovarian function. PLoS One. 2011;6:e26627. This paper also shows that female mice lacking Sema4D expression have an osteosclerotic bone phenotype. These authors concentrate on identifiying a potential role for Sema4D in osteoclast function and the potential for its regulation by ovarian hormones.

    Article  PubMed  CAS  Google Scholar 

  47. Shi W, Kumanogoh A, Watanabe C, et al. The class IV semaphorin CD100 plays nonredundant roles in the immune system: defective B and T cell activation in CD100-deficient mice. Immunity. 2000;13:633–42.

    Article  PubMed  CAS  Google Scholar 

  48. Zhao C, Irie N, Takada Y, et al. Bidirectional ephrinB2-EphB4 signaling controls bone homeostasis. Cell Metab. 2006;4:111–21.

    Article  PubMed  CAS  Google Scholar 

  49. Wang Z, Cohen K, Shao Y, Mole P, Dombkowski D, Scadden DT. Ephrin receptor, EphB4, regulates ES cell differentiation of primitive mammalian hemangioblasts, blood, cardiomyocytes, and blood vessels. Blood. 2004;103:100–9.

    Article  PubMed  CAS  Google Scholar 

  50. Taylor AC, Murfee WL, Peirce SM. EphB4 expression along adult rat microvascular networks: EphB4 is more than a venous specific marker. Microcirculation. 2007;14:253–67.

    Article  PubMed  CAS  Google Scholar 

  51. Wang Y, Nakayama M, Pitulescu ME, et al. Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis. Nature. 2010;465:483–6.

    Article  PubMed  CAS  Google Scholar 

  52. Gerety SS, Wang HU, Chen ZF, Anderson DJ. Symmetrical mutant phenotypes of the receptor EphB4 and its specific transmembrane ligand ephrin-B2 in cardiovascular development. Mol Cell. 1999;4:403–14.

    Article  PubMed  CAS  Google Scholar 

  53. Andersen TL, Sondergaard TE, Skorzynska KE, et al. A physical mechanism for coupling bone resorption and formation in adult human bone. Am J Pathol. 2009;174:239–47.

    Article  PubMed  CAS  Google Scholar 

  54. Martin TJ, Sims NA, Quinn JMW. Interactions among osteoblasts, osteoclasts, and other cells in bone. In: Lorenzo J, Choi YW, Horowitz MC, Takayanagi H, editors. Osteoimmunology: interactions of the immune and skeletal systems. London: Academic; 2010. p. 227–68.

    Google Scholar 

  55. Yu G, Mao J, Wu Y, Luo H, Wu J. Ephrin-B1 is critical in T-cell development. J Biol Chem. 2006;281:10222–9.

    Article  PubMed  CAS  Google Scholar 

  56. Allan EH, Hausler KD, Wei T, et al. EphrinB2 regulation by PTH and PTHrP revealed by molecular profiling in differentiating osteoblasts. J Bone Miner Res. 2008;23:1170–81.

    Article  PubMed  CAS  Google Scholar 

  57. Arthur A, Zannettino A, Panagopoulos R, et al. EphB/ephrin-B interactions mediate human MSC attachment, migration and osteochondral differentiation. Bone. 2011;48:533–42.

    Article  PubMed  CAS  Google Scholar 

  58. Martin TJ, Allan EH, Ho PW, et al. Communication between EphrinB2 and EphB4 within the osteoblast lineage. Adv Exp Med Biol. 2010;658:51–60.

    Article  PubMed  CAS  Google Scholar 

  59. Xing W, Kim J, Wergedal J, Chen ST, Mohan S. Ephrin B1 regulates bone marrow stromal cell differentiation and bone formation by influencing TAZ transactivation via complex formation with NHERF1. Mol Cell Biol. 2010;30:711–21.

    Article  PubMed  CAS  Google Scholar 

  60. Davy A, Aubin J, Soriano P. Ephrin-B1 forward and reverse signaling are required during mouse development. Genes Dev. 2004;18:572–83.

    Article  PubMed  CAS  Google Scholar 

  61. Compagni A, Logan M, Klein R, Adams RH. Control of skeletal patterning by ephrinB1-EphB interactions. Dev Cell. 2003;5:217–30.

    Article  PubMed  CAS  Google Scholar 

  62. Ting MC, Wu NL, Roybal PG, et al. EphA4 as an effector of Twist1 in the guidance of osteogenic precursor cells during calvarial bone growth and in craniosynostosis. Development. 2009;136:855–64.

    Article  PubMed  CAS  Google Scholar 

  63. Balemans W, Ebeling M, Patel N, et al. Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum Mol Genet. 2001;10:537–43.

    Article  PubMed  CAS  Google Scholar 

  64. Loots GG, Kneissel M, Keller H, et al. Genomic deletion of a long-range bone enhancer misregulates sclerostin in Van Buchem disease. Genome Res. 2005;15:928–35.

    Article  PubMed  CAS  Google Scholar 

  65. Brunkow ME, Gardner JC, Van Ness J, et al. Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein. Am J Hum Genet. 2001;68:577–89.

    Article  PubMed  CAS  Google Scholar 

  66. Zhu D, Mackenzie NC, Millan JL, Farquharson C, Macrae VE. The appearance and modulation of osteocyte marker expression during calcification of vascular smooth muscle cells. PLoS One. 2011;6:e19595.

    Article  PubMed  CAS  Google Scholar 

  67. Winkler DG, Sutherland MK, Geoghegan JC, et al. Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. EMBO J. 2003;22:6267–76.

    Article  PubMed  CAS  Google Scholar 

  68. Chan BY, Fuller ES, Russell AK, et al. Increased chondrocyte sclerostin may protect against cartilage degradation in osteoarthritis. Osteoarthr Cartil. 2011;19:874–85.

    Article  PubMed  CAS  Google Scholar 

  69. Didangelos A, Yin X, Mandal K, Baumert M, Jahangiri M, Mayr M. Proteomics characterization of extracellular space components in the human aorta. Mol Cell Proteomics. 2010;9:2048–62.

    Article  PubMed  CAS  Google Scholar 

  70. Sims NA, Chia LY. Regulation of sclerostin expression by paracrine and endocrine factors. Clin Rev Bone Miner Metab. 2012. doi:10.1007/s12018-011-9121-7.

  71. Genetos DC, Yellowley CE, Loots GG. Prostaglandin E2 signals through PTGER2 to regulate sclerostin expression. PLoS One. 2011;6:e17772.

    Article  PubMed  CAS  Google Scholar 

  72. • Mantila Roosa SM, Liu Y, Turner CH. Gene expression patterns in bone following mechanical loading. J Bone Miner Res. 2011;26:100–12. This study uses microarray analyses to identify early and late response genes regulated in response to mechanical loading in the rat ulna. These genes are likely to contribute to the intercellular cross-talk between osteocytes, osteoblast lineage cells, and osteoclasts.

    Article  PubMed  Google Scholar 

  73. Takada I, Kouzmenko AP, Kato S. Molecular switching of osteoblastogenesis versus adipogenesis: implications for targeted therapies. Expert Opin Ther Targets. 2009;13:593–603.

    Article  PubMed  CAS  Google Scholar 

  74. Kawai M, Devlin MJ, Rosen CJ. Fat targets for skeletal health. Nat Rev Rheumatol. 2009;5:365–72.

    Article  PubMed  Google Scholar 

  75. Kelly KA, Tanaka S, Baron R, Gimble JM. Murine bone marrow stromally derived BMS2 adipocytes support differentiation and function of osteoclast-like cells in vitro. Endocrinology. 1998;139:2092–101.

    Article  PubMed  CAS  Google Scholar 

  76. Quach JM, Walker EC, Allan E, et al. Zinc finger protein 467 is a novel regulator of osteoblast and adipocyte commitment. J Biol Chem. 2011;286:4186–98.

    Article  PubMed  CAS  Google Scholar 

  77. Goto H, Osaki M, Fukushima T, et al. Human bone marrow adipocytes support dexamethasone-induced osteoclast differentiation and function through RANKL expression. Biomed Res. 2011;32:37–44.

    Article  PubMed  CAS  Google Scholar 

  78. Goto H, Hozumi A, Osaki M, et al. Primary human bone marrow adipocytes support TNF-alpha-induced osteoclast differentiation and function through RANKL expression. Cytokine. 2011;56:662–8.

    Article  PubMed  CAS  Google Scholar 

  79. Kuhn MC, Willenberg HS, Schott M, et al. Adipocyte-secreted factors increase osteoblast proliferation and the OPG/RANKL ratio to influence osteoclast formation. Mol Cell Endocrinol. 2012;349:180–8.

    Article  PubMed  Google Scholar 

  80. Quinn JM, Saleh H. Modulation of osteoclast function in bone by the immune system. Mol Cell Endocrinol. 2009;310:40–51.

    Article  PubMed  CAS  Google Scholar 

  81. Okamoto K, Takayanagi H. Regulation of bone by the adaptive immune system in arthritis. Arthritis Res Ther. 2011;13:219.

    Article  PubMed  CAS  Google Scholar 

  82. Oostlander AE, Everts V, Schoenmaker T, et al. T cell-mediated increased osteoclast formation from peripheral blood as a mechanism for crohn’s disease-associated bone loss. J Cell Biochem. 2012;113:260–8.

    Article  PubMed  CAS  Google Scholar 

  83. Won HY, Lee JA, Park ZS, et al. Prominent bone loss mediated by RANKL and IL-17 produced by CD4+ T cells in TallyHo/JngJ mice. PLoS One. 2011;6:e18168.

    Google Scholar 

  84. Josefowicz SZ, Lu LF, Rudensky AY. Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol 2012

  85. Kim YG, Lee CK, Nah SS, Mun SH, Yoo B, Moon HB. Human CD4 + CD25+ regulatory T cells inhibit the differentiation of osteoclasts from peripheral blood mononuclear cells. Biochem Biophys Res Commun. 2007;357:1046–52.

    Article  PubMed  CAS  Google Scholar 

  86. Kelchtermans H, Geboes L, Mitera T, Huskens D, Leclercq G, Matthys P. Activated CD4 + CD25+ regulatory T cells inhibit osteoclastogenesis and collagen-induced arthritis. Ann Rheum Dis. 2009;68:744–50.

    Article  PubMed  CAS  Google Scholar 

  87. Zaiss MM, Axmann R, Zwerina J, et al. Treg cells suppress osteoclast formation: a new link between the immune system and bone. Arthritis Rheum. 2007;56:4104–12.

    Article  PubMed  CAS  Google Scholar 

  88. Zaiss MM, Sarter K, Hess A, et al. Increased bone density and resistance to ovariectomy-induced bone loss in FoxP3-transgenic mice based on impaired osteoclast differentiation. Arthritis Rheum. 2010;62:2328–38.

    Article  PubMed  CAS  Google Scholar 

  89. Zaiss MM, Frey B, Hess A, et al. Regulatory T cells protect from local and systemic bone destruction in arthritis. J Immunol. 2010;184:7238–46.

    Article  PubMed  CAS  Google Scholar 

  90. Kong YY, Feige U, Sarosi I, et al. Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature. 1999;402:304–9.

    Article  PubMed  CAS  Google Scholar 

  91. Kremer JM, Russell AS, Emery P, et al. Long-term safety, efficacy and inhibition of radiographic progression with abatacept treatment in patients with rheumatoid arthritis and an inadequate response to methotrexate: 3-year results from the AIM trial. Ann Rheum Dis. 2011;70:1826–30.

    Article  PubMed  CAS  Google Scholar 

  92. Chang MK, Raggatt LJ, Alexander KA, et al. Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo. J Immunol. 2008;181:1232–44.

    PubMed  CAS  Google Scholar 

  93. Pettit AR, Chang MK, Hume DA, Raggatt LJ. Osteal macrophages: a new twist on coupling during bone dynamics. Bone. 2008;43:976–82.

    Article  PubMed  Google Scholar 

  94. Alexander KA, Chang MK, Maylin ER, et al. Osteal macrophages promote in vivo intramembranous bone healing in a mouse tibial injury model. J Bone Miner Res. 2011;26:1517–32.

    Google Scholar 

  95. Levesque JP, Winkler IG. Mobilization of hematopoietic stem cells: state of the art. Curr Opin Organ Transplant. 2008;13:53–8.

    Article  PubMed  Google Scholar 

  96. Christopher MJ, Link DC. Granulocyte colony-stimulating factor induces osteoblast apoptosis and inhibits osteoblast differentiation. J Bone Miner Res. 2008;23:1765–74.

    Article  PubMed  Google Scholar 

  97. Winkler IG, Sims NA, Pettit AR, et al. Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood. 2010;116:4815–28.

    Article  PubMed  CAS  Google Scholar 

  98. Christopher MJ, Rao M, Liu F, Woloszynek JR, Link DC. Expression of the G-CSF receptor in monocytic cells is sufficient to mediate hematopoietic progenitor mobilization by G-CSF in mice. J Exp Med. 2011;208:251–60.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalie A. Sims.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sims, N.A., Walsh, N.C. Intercellular Cross-Talk Among Bone Cells: New Factors and Pathways. Curr Osteoporos Rep 10, 109–117 (2012). https://doi.org/10.1007/s11914-012-0096-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-012-0096-1

Keywords

Navigation