Skip to main content
Log in

Bone geometry and skeletal fragility

  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Although low bone mineral density is among the strongest risk factors for fracture, a number of clinical studies have demonstrated the limitations of bone mineral density measurements in assessing fracture risk and monitoring the response to therapy. These observations have brought renewed attention to the broader array of factors that influence skeletal fragility, including bone size, shape, and microarchitecture. This article reviews the relationship between bone geometry and skeletal fragility, focusing on the impact of bone geometry on bone strength and fracture risk. It also reviews recent data on the effect of osteoporosis therapies on femoral geometry. It is clear that characteristics of a bone’s size and shape strongly influence its biomechanical strength, but there is no consensus as to the geometric parameters that improve prediction of fracture risk. Recent data from hip structure analysis indicate that antiresorptive and anticatabolic treatments alter femoral geometry, but this observation depends on several assumptions that have not been tested in subjects treated with osteoporosis therapies. Current knowledge is limited, in part, by the predominant use of two-dimensional techniques to assess bone geometry. Additional studies that incorporate three-dimensional imaging are needed to better define the relationship between bone geometry and skeletal fragility, and to establish the clinical utility of bone geometry measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. US Department of Health and Human Services: Bone Health and Osteoporosis: A Report of the Surgeon General. Rockville, MD: US Department of Health and Human Services, Office of the Surgeon General; 2004.

    Google Scholar 

  2. NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy: Osteoporosis prevention, diagnosis, and therapy. JAMA 2001, 285:785–795.

    Article  Google Scholar 

  3. Bouxsein M: Biomechanics of age-related fractures. In Osteoporosis, edn 2. Edited by Marcus R, Feldman D, Kelsey J. San Diego: Academic Press; 2001:509–534.

    Google Scholar 

  4. Bouxsein ML, Coan BS, Lee SC: Prediction of the strength of the elderly proximal femur by bone mineral density and quantitative ultrasound measurements of the heel and tibia. Bone 1999, 25:49–54.

    Article  PubMed  CAS  Google Scholar 

  5. Lochmuller EM, Groll O, Kuhn V, Eckstein F: Mechanical strength of the proximal femur as predicted from geometric and densitometric bone properties at the lower limb versus the distal radius. Bone 2002, 30:207–216.

    Article  PubMed  CAS  Google Scholar 

  6. Lochmuller EM, Burklein D, Kuhn V, et al.: Mechanical strength of the thoracolumbar spine in the elderly: prediction from in situ dual-energy x-ray absorptiometry, quantitative computed tomography (QCT), upper and lower limb peripheral QCT, and quantitative ultrasound. Bone 2002, 31:77–84.

    Article  PubMed  Google Scholar 

  7. Lochmuller EM, Lill CA, Kuhn V, et al.: Radius bone strength in bending, compression, and falling and its correlation with clinical densitometry at multiple sites. J Bone Miner Res 2002, 17:1629–1638.

    Article  PubMed  Google Scholar 

  8. Muller ME, Webber CE, Bouxsein ML: Predicting the failure load of the distal radius. Osteoporos Int 2003, 14:345–352.

    Article  PubMed  Google Scholar 

  9. Cheng X, Lowet G, Boonen S, et al.: Assessment of the strength of proximal femur in vitro: relationship to femoral bone mineral density and femoral geometry. Bone 1997, 20:213–218.

    Article  PubMed  CAS  Google Scholar 

  10. Beck TJ, Ruff CB, Warden KE, et al.: Predicting femoral neck strength from bone mineral data. A structural approach. Invest Radiol 1990, 25:6–18.

    Article  PubMed  CAS  Google Scholar 

  11. Pinilla TP, Boardman KC, Bouxsein ML, et al.: Impact direction from a fall influences the failure load of the proximal femur as much as age-related bone loss. Calcif Tissue Int 1996, 58:231–235.

    PubMed  CAS  Google Scholar 

  12. Glüer CC, Cummings SR, Pressman A, et al.: Prediction of hip fractures from pelvic radiographs: the study of osteoporotic fractures. The Study of Osteoporotic Fractures Research Group. J Bone Min Res 1994, 9:671–677.

    Google Scholar 

  13. Karlsson K, Sernbo I, Obrant K, et al.: Femoral neck geometry and radiographic signs of osteoporosis as predictors of hip fracture. Bone 1996, 18:327–330.

    Article  PubMed  CAS  Google Scholar 

  14. Calis HT, Eryavuz M, Calis M: Comparison of femoral geometry among cases with and without hip fractures. Yonsei Med J 2004, 45:901–907.

    PubMed  Google Scholar 

  15. Pulkkinen P, Partanen J, Jalovaara P, Jamsa T: Combination of bone mineral density and upper femur geometry improves the prediction of hip fracture. Osteoporos Int 2004, 15:274–280.

    Article  PubMed  Google Scholar 

  16. Gnudi S, Ripamonti C, Lisi L, et al.: Proximal femur geometry to detect and distinguish femoral neck fractures from trochanteric fractures in postmenopausal women. Osteoporos Int 2002, 13:69–73.

    Article  PubMed  CAS  Google Scholar 

  17. El-Kaissi S, Pasco JA, Henry MJ, et al.: Femoral neck geometry and hip fracture risk: the Geelong osteoporosis study. Osteoporos Int 2005, 16:1299–1303.

    Article  PubMed  CAS  Google Scholar 

  18. Beck TJ, Ruff CB, Bissessur K: Age-related changes in female femoral neck geometry: implications for bone strength. Calcif Tissue Int 1993, 53(Suppl 1):S41-S46.

    Article  PubMed  Google Scholar 

  19. Ahlborg HG, Nguyen ND, Nguyen TV, et al.: Contribution of hip strength indices to hip fracture risk in elderly men and women. J Bone Miner Res 2005, 20:1820–1827. Prospective study of the ability of hip structure analysis (HSA)-derived femoral geometry to predict hip fracture in men and women.

    Article  PubMed  Google Scholar 

  20. Szulc P, Duboeuf F, Schott AM, et al.: Structural determinants of hip fracture in elderly women: re-analysis of the data from the EPIDOS study. Osteoporos Int 2006, 17:231–236. Prospective study of HSA-derived femoral geometry to predict hip fracture in elderly women.

    Article  PubMed  CAS  Google Scholar 

  21. Lang TF, Guglielmi G, van Kuijk C, et al.: Measurement of bone mineral density at the spine and proximal femur by volumetric quantitative computed tomography and dual-energy x-ray absorptiometry in elderly women with and without vertebral fractures. Bone 2002, 30:247–250.

    Article  PubMed  CAS  Google Scholar 

  22. Kang Y, Engelke K, Kalender WA: A new accurate and precise 3-D segmentation method for skeletal structures in volumetric CT data. IEEE Trans Med Imaging 2003, 22:586–598.

    Article  PubMed  Google Scholar 

  23. Riggs BL, Melton LJ 3rd, Robb RA, et al.: Population-based study of age and sex differences in bone volumetric density, size, geometry, and structure at different skeletal sites. J Bone Miner Res 2004, 19:1945–1954.

    Article  PubMed  Google Scholar 

  24. Kang Y, Engelke K, Fuchs C, Kalender WA: An anatomic coordinate system of the femoral neck for highly reproducible BMD measurements using 3D QCT. Comput Med Imaging Graph 2005, 29:533–541.

    Article  PubMed  Google Scholar 

  25. McKay HA, Sievanen H, Petit MA, et al.: Application of magnetic resonance imaging to evaluation of femoral neck structure in growing girls. J Clin Densitom 2004, 7:161–168.

    Article  PubMed  Google Scholar 

  26. Beck T: Measuring the structural strength of bones with dual-energy x-ray absorptiometry: principles, technical limitations, and future possibilities. Osteoporos Int 2003, 14(Suppl 5):81–88. Review of principles of hip structure analysis for assessment of femoral geometry.

    Article  PubMed  Google Scholar 

  27. Uusi-Rasi K, Beck TJ, Semanick LM, et al.: Structural effects of raloxifene on the proximal femur: results from the Multiple Outcomes of Raloxifene Evaluation trial. Osteoporos Int 2006, 17:575–586. Longitudinal study showing effects of raloxifene on HSA-derived femoral geometry.

    Article  PubMed  CAS  Google Scholar 

  28. Roschger P, Gupta HS, Berzlanovich A, et al.: Constant mineralization density distribution in cancellous human bone. Bone 2003, 32:316–323.

    Article  PubMed  CAS  Google Scholar 

  29. Boivin GY, Chavassieux PM, Santora AC, et al.: Alendronate increases bone strength by increasing the mean degree of mineralization of bone tissue in osteoporotic women. Bone 2000, 27:687–694.

    Article  PubMed  CAS  Google Scholar 

  30. Roschger P, Rinnerthaler S, Yates J, et al.: Alendronate increases degree and uniformity of mineralization in cancellous bone and decreases the porosity in cortical bone of osteoporotic women. Bone 2001, 29:185–191.

    Article  PubMed  CAS  Google Scholar 

  31. Boivin G, Lips P, Ott SM, et al.: Contribution of raloxifene and calcium and vitamin D3 supplementation to the increase of the degree of mineralization of bone in postmenopausal women. J Clin Endocrinol Metab 2003, 88:4199–4205.

    Article  PubMed  CAS  Google Scholar 

  32. Borah B, Ritman EL, Dufresne TE, et al.: The effect of risedronate on bone mineralization as measured by micro-computed tomography with synchrotron radiation: correlation to histomorphometric indices of turnover. Bone 2005, 37:1–9.

    Article  PubMed  CAS  Google Scholar 

  33. Misof BM, Roschger P, Cosman F, et al.: Effects of intermittent parathyroid hormone administration on bone mineralization density in iliac crest biopsies from patients with osteoporosis: a paired study before and after treatment. J Clin Endocrinol Metab 2003, 88:1150–1156.

    Article  PubMed  CAS  Google Scholar 

  34. Melton LJ 3rd, Beck TJ, Amin S, et al.: Contributions of bone density and structure to fracture risk assessment in men and women. Osteoporos Int 2005, 16:460–467.

    Article  PubMed  Google Scholar 

  35. Smith R, Walker R: Femoral expansion in aging women: implications for osteoporosis and fractures. Science 1964, 145:156–157.

    Article  PubMed  Google Scholar 

  36. Ruff C, Hayes W: Subperiosteal expansion and cortical remodeling of the human femur and tibia with aging. Science 1982, 217:945–947.

    Article  PubMed  CAS  Google Scholar 

  37. Seeman E: Pathogenesis of bone fragility in women and men. Lancet 2002, 359:1841–1850.

    Article  PubMed  Google Scholar 

  38. Ruff C, Hayes W: Sex differences in age-related remodeling of the femur and tibia. J Orthop Res 1988, 6:886–896.

    Article  PubMed  CAS  Google Scholar 

  39. Seeman E: From density to structure: growing up and growing old on the surfaces of bone. J Bone Miner Res 1997, 12:509–521.

    Article  PubMed  CAS  Google Scholar 

  40. Duan Y, Turner CH, Kim BT, Seeman E: Sexual dimorphism in vertebral fragility is more the result of gender differences in age-related bone gain than bone loss. J Bone Miner Res 2001, 16:2267–2275.

    Article  PubMed  CAS  Google Scholar 

  41. Kaptoge S, Dalzell N, Loveridge N, et al.: Effects of gender, anthropometric variables, and aging on the evolution of hip strength in men and women aged over 65. Bone 2003, 32:561–570.

    Article  PubMed  Google Scholar 

  42. Mayhew PM, Thomas CD, Clement JG, et al.: Relation between age, femoral neck cortical stability, and hip fracture risk. Lancet 2005, 366:129–135. Examination of a wide range of human cadaveric specimens to identify possible causes of age-related femoral fragility.

    Article  PubMed  Google Scholar 

  43. Skaggs DL, Loro ML, Pitukcheewanont P, et al.: Increased body weight and decreased radial cross-sectional dimensions in girls with forearm fractures. J Bone Miner Res 2001, 16:1337–1342.

    Article  PubMed  CAS  Google Scholar 

  44. Ahlborg HG, Johnell O, Turner CH, et al.: Bone loss and bone size after menopause. N Engl J Med 2003, 349:327–334.

    Article  PubMed  Google Scholar 

  45. Gilsanz V, Boechat MI, Gilsanz R, et al.: Gender differences in vertebral sizes in adults: biomechanical implications. Radiology 1994, 190:678–682.

    PubMed  CAS  Google Scholar 

  46. Gilsanz V, Kovanlikaya A, Costin G, et al.: Differential effect of gender on the sizes of the bones in the axial and appendicular skeletons. J Clin Endocrinol Metab 1997, 82:1603–1607. [Published erratum appears in J Clin Endocrinol Metab 1997, 82:2274.]

    Article  PubMed  CAS  Google Scholar 

  47. Duan Y, Seeman E, Turner CH: The biomechanical basis of vertebral body fragility in men and women. J Bone Miner Res 2001, 16:2276–2283.

    Article  PubMed  CAS  Google Scholar 

  48. Bouxsein ML, Riggs BL, Melton LJ 3rd, et al.: Spinal loading and vertebral strength: a population-based study using QCT [abstract]. J Bone Min Res 2005, 20(Suppl 1):S20.

    Google Scholar 

  49. Gilsanz V, Loro ML, Roe TF, et al.: Vertebral size in elderly women with osteoporosis. Mechanical implications and relationship to fractures. J Clin Invest 1995, 95:2332–2337.

    Article  PubMed  CAS  Google Scholar 

  50. Duan Y, Parfitt A, Seeman E: Vertebral bone mass, size, and volumetric density in women with spinal fractures. J Bone Miner Res 1999, 14:1796–1802.

    Article  PubMed  CAS  Google Scholar 

  51. Alonso CG, Curiel MD, Carranza FH, et al.: Femoral bone mineral density, neck-shaft angle and mean femoral neck width as predictors of hip fracture in men and women. Multicenter Project for Research in Osteoporosis. Osteoporos Int 2000, 11:714–720.

    Article  PubMed  CAS  Google Scholar 

  52. Faulkner KG, Cummings SR, Black D, et al.: Simple measurement of femoral geometry predicts hip fracture: the study of osteoporotic fracture. J Bone Min Res 1993, 8:1211–1217.

    Article  CAS  Google Scholar 

  53. Crabtree NJ, Kroger H, Martin A, et al.: Improving risk assessment: hip geometry, bone mineral distribution and bone strength in hip fracture cases and controls. The EPOS study. European Prospective Osteoporosis Study. Osteoporos Int 2002, 13:48–54.

    Article  PubMed  CAS  Google Scholar 

  54. Faulkner KG, Wacker WK, Barden HS, et al.: Femur strength index predicts hip fracture independent of bone density and hip axis length. Osteoporos Int 2006, 17:593–599.

    Article  PubMed  CAS  Google Scholar 

  55. Gnudi S, Ripamonti C, Gualtieri G, Malavolta N: Geometry of proximal femur in the prediction of hip fracture in osteoporotic women. Br J Radiol 1999, 72:729–733.

    PubMed  CAS  Google Scholar 

  56. Duan Y, Beck TJ, Wang XF, Seeman E: Structural and biomechanical basis of sexual dimorphism in femoral neck fragility has its origins in growth and aging. J Bone Miner Res 2003, 18:1766–1774.

    Article  PubMed  Google Scholar 

  57. Filardi S, Zebaze RM, Duan Y, et al.: Femoral neck fragility in women has its structural and biomechanical basis established by periosteal modeling during growth and endocortical remodeling during aging. Osteoporos Int 2004, 15:103–107.

    Article  PubMed  Google Scholar 

  58. Duboeuf F, Hans D, Schott AM, et al.: Different morphometric and densitometric parameters predict cervical and trochanteric hip fracture: the EPIDOS Study. J Bone Miner Res 1997, 12:1895–1902.

    Article  PubMed  CAS  Google Scholar 

  59. Seeman E, Duan Y, Fong C, Edmonds J: Fracture site-specific deficits in bone size and volumetric density in men with spine or hip fractures. J Bone Miner Res 2001, 16:120–127.

    Article  PubMed  CAS  Google Scholar 

  60. Karlamangla AS, Barrett-Connor E, Young J, Greendale GA: Hip fracture risk assessment using composite indices of femoral neck strength: the Rancho Bernardo study. Osteoporos Int 2004, 15:62–70. Approach to assessment of femoral fracture risk using composite indices of femoral strength.

    Article  PubMed  Google Scholar 

  61. Bergot C, Bousson V, Meunier A, et al.: Hip fracture risk and proximal femur geometry from DXA scans. Osteoporos Int 2002, 13:542–550.

    Article  PubMed  CAS  Google Scholar 

  62. Michelotti J, Clark J: Femoral neck length and hip fracture risk. J Bone Miner Res 1999, 14:1714–1720.

    Article  PubMed  CAS  Google Scholar 

  63. Greenspan SL, Beck TJ, Resnick NM, et al.: Effect of hormone replacement, alendronate, or combination therapy on hip structural geometry: a 3-year, double-blind, placebo-controlled clinical trial. J Bone Miner Res 2005, 20:1525–1532. Effect of anticatabolic therapy on HSA-derived femoral structure.

    Article  PubMed  CAS  Google Scholar 

  64. Uusi-Rasi K, Semanick LM, Zanchetta JR, et al.: Effects of teriparatide [rhPTH (1-34)] treatment on structural geometry of the proximal femur in elderly osteoporotic women. Bone 2005, 36:948–958. Effect of anabolic therapy on HSA-derived femoral structure.

    Article  PubMed  CAS  Google Scholar 

  65. Ettinger B, Black DM, Mitlak BH, et al.: Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene: results from a 3-year randomized clinical trial. Multiple Outcomes of Raloxifene Evaluation (MORE) Investigators. JAMA 1999, 282:637–645. [Published erratum appears in JAMA 1999, 282:2124.]

    Article  PubMed  CAS  Google Scholar 

  66. Neer RM, Arnaud CD, Zanchetta JR, et al.: Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med 2001, 344:1434–1441.

    Article  PubMed  CAS  Google Scholar 

  67. Zanchetta J, Bogado C, Ferretti J, et al.: Effects of teriparatide [recombinant human parathyroid hormone (1-34)] on cortical bone in postmenopausal women with osteoporosis. J Bone Min Res 2003, 18:539–543.

    Article  CAS  Google Scholar 

  68. Gnudi S, Malavolta N, Testi D, Viceconti M: Differences in proximal femur geometry distinguish vertebral from femoral neck fractures in osteoporotic women. Br J Radiol 2004, 77:219–223.

    Article  PubMed  CAS  Google Scholar 

  69. Frisoli A Jr, Paula AP, Pinheiro M, et al.: Hip axis length as an independent risk factor for hip fracture independently of femural bone mineral density in Caucasian elderly Brazilian women. Bone 2005, 37:871–875.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary L. Bouxsein PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouxsein, M.L., Karasik, D. Bone geometry and skeletal fragility. Curr Osteoporos Rep 4, 49–56 (2006). https://doi.org/10.1007/s11914-006-0002-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-006-0002-9

Keywords

Navigation