Skip to main content
Log in

Femur strength index predicts hip fracture independent of bone density and hip axis length

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Introduction

Proximal femoral bone strength is not only a function of femoral bone mineral density (BMD), but also a function of the spatial distribution of bone mass intrinsic in structural geometric properties such as diameter, area, length, and angle of the femoral neck. Recent advancements in bone density measurement include software that can automatically calculate a variety of femoral structural variables that may be related to hip fracture risk. The purpose of this study was to compare femoral bone density, structure, and strength assessments obtained from dual-energy X-ray absorbtiometry (DXA) measurements in a group of women with and without hip fracture.

Methods

DXA measurements of the proximal femur were obtained from 2,506 women 50 years of age or older, 365 with prior hip fracture and 2,141 controls. In addition to the conventional densitometry measurements, structural variables were determined using the Hip Strength Analysis program, including hip axis length (HAL), cross-sectional moment of inertia (CSMI), and the femur strength index (FSI) calculated as the ratio of estimated compressive yield strength of the femoral neck to the expected compressive stress of a fall on the greater trochanter.

Results

Femoral neck BMD was significantly lower and HAL significantly higher in the fracture group compared with controls. Mean CSMI was not significantly different between fracture patients and controls after adjustment for BMD and HAL. FSI, after adjustment for T score and HAL, was significantly lower in the fracture group, consistent with a reduced capacity to withstand a fall without fracturing a hip.

Conclusion

We conclude that BMD, HAL, and FSI are significant independent predictors of hip fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lin JT, Lane JM (2004) Osteoporosis: a review. Clin Ortop 425:126–134

    Article  Google Scholar 

  2. Nurmi I, Narinen A, Luthje P, Tanninen S (2003) Cost analysis of hip fracture treatment among the elderly for the public health services: a 1-year prospective study in 106 consecutive patients. Arch Orthop Trauma Surg 123:551–554

    Article  PubMed  Google Scholar 

  3. Woolf AD, Pfleger B (2003) Burden of major musculoskeletal conditions. Bull World Health Organ 81:646–656

    PubMed  Google Scholar 

  4. Melton LJ III, Gabriel SE, Crowson CS, Tosteson AN, Johnell O, Kanis JA (2003) Cost–equivalence of different osteoporotic fractures. Osteoporos Int 14:383–388

    Article  PubMed  Google Scholar 

  5. Khasraghi FA, Lee EJ, Christmas C, Wenz JF (2003) The economic impact of medical complications in geriatric patients with hip fracture. Orthopedics 26:49–53

    PubMed  Google Scholar 

  6. Melton LJ III (2003) Adverse outcomes of osteoporotic fractures in the general population. J Bone Miner Res 18:1139–1141

    Article  PubMed  Google Scholar 

  7. Johnell O, Kanis JA, Oden A, Sernbo I, Redlund–Johnell I, Petterson C, De Laet C, Jonsson B (2004) Mortality after osteoporotic fractures. Osteoporos Int 15:38–42

    Article  PubMed  CAS  Google Scholar 

  8. Johnell O, Kanis JA (2004) An estimate of the worldwide prevalence, mortality and disability associated with hip fracture. Osteoporos Int 15:897–902

    Article  PubMed  CAS  Google Scholar 

  9. Empana JP, Dargent Molina P, Breart G, EPIDOS Group (2004) Effect of hip fracture on mortality in elderly women: the EPIDOS prospective study. J Am Geriatr Soc 52:685–690

    Article  PubMed  Google Scholar 

  10. Olszynski WO, Shawn Davison K, Adachi JD, Brown JP, Cummings SR, Hanley DA, Harris SP, Hodsman AB, Kendler D, McClung MR, Miller PD, Yuen CK (2004) Osteoporosis in men: epidemiology, diagnosis, prevention, and treatment. Clin Ther 26:15–28

    Article  PubMed  Google Scholar 

  11. Youm T, Koval KJ, Zuckerman JD (1999) The economic impact of geriatric hip fractures. Am J Orthop 28:423–428

    PubMed  CAS  Google Scholar 

  12. Woolf AD, Pfleger B (2003) Burden of major musculoskeletal conditions. Bull World Health Organ 81:646–656

    PubMed  Google Scholar 

  13. Watts NB (2004) Fundamentals and pitfalls of bone densitometry using dual–energy X–ray absorptiometry (DXA). Osteoporos Int 15:847–854

    Article  PubMed  Google Scholar 

  14. Elliott ME, Binkley N (2004) Evaluation and measurement of bone mass. Epilepsy Behav 5(Suppl 2):S16–S23

    Article  PubMed  Google Scholar 

  15. Dalen N, Hellstrom LG, Jacobson B (1976) Bone mineral content and mechanical strength in the femoral neck. Acta Orthop Scand 47:503–508

    PubMed  CAS  Google Scholar 

  16. Hansson T, Roos B, Nachemson A (1980) The bone mineral content and ultimate compressive strength of lumbar vertebrae. Spine 5:46–55

    Article  PubMed  CAS  Google Scholar 

  17. Sartoris DJ, Sommer FG, Kosek J, Gies AA, Carter D (1985) Dual energy projection radiography in evaluation of femoral neck strength, density, and mineralization. Invest Radiol 20:476–485

    Article  PubMed  CAS  Google Scholar 

  18. Alho A, Hoiseth A, Husby T (1989) Bone mass distribution in the femur. A cadaver study on the relation of structure and strength. Acta Orthop Scand 60:629–630

    Article  PubMed  Google Scholar 

  19. Alho A, Husby T, Hoiseth A (1988) Bone mineral content and mechanical strength. An ex vivo study on human femora at autopsy. Clin Ortop 227:292–297

    CAS  Google Scholar 

  20. Nokso–Koivisto VM, Alhava EM, Olkkonen H (1976) Measurement of cancellous bone strength correlations with mineral density, aging, and disease. Ann Clin Res 8:399–402

    PubMed  CAS  Google Scholar 

  21. Rockoff SD, Sweet E, Bluestein J (1969) The relative contribution of trabecular and cortical bone to the strength of human vertebrae. Calcif Tissue Res 3:163–165

    Article  PubMed  CAS  Google Scholar 

  22. Leichter I, Margulies JY, Weinreb A, Mizrahi J, Robin GC, Conforty B, Makin M, Bloch B (1982) The relationship between bone density, mineral content and mechanical strength in the femoral neck. Clin Ortop 163:272–281

    Google Scholar 

  23. Beck TJ, Ruff CB, Warden KE, Scott WW, Rao GU (1990) Predicting femoral neck strength from bone mineral data: A structural approach. Invest Radiol 25:6–18

    Article  PubMed  CAS  Google Scholar 

  24. Beck TJ, Ruff CB, Bissessur K (1993) Age-related changes in female femoral neck geometry: implications for bone strength. Calcif Tissue Int 53 (Suppl 1):S41–S46

    Article  PubMed  Google Scholar 

  25. Crabtree NJ, Kroger H, Martin A, Pols HAP, Lorenc R, Nijs J, Stepan JJ, Falch JA, Miazgowski T, Grazio S, Raptou P, Adams J, Collings A, Khaw K–T, Rushton N, Lunt M, Dixon AK, Reeve J (2002) Improving risk assessment: hip geometry, bone mineral distribution and bone strength in hip fracture cases and controls. The EPOS study. Osteoporos Int 13:48–54

    Article  PubMed  CAS  Google Scholar 

  26. Duan Y, Beck TJ, Wang X–F, Seeman E (2003) Structural and biomechanical baisis of sexual dimorphism in femoral neck fragility has its origins in growth and aging. J Bone Miner Res 18:1766–1774

    Article  PubMed  Google Scholar 

  27. Mazess RB (1982) On aging bone loss. Clin Ortop 165:239–252

    Google Scholar 

  28. Bouxsein ML, Coan BS, Lee SC (1999) Prediction of the strength of the elderly proximal femur by bone mineral density and quantitative ultrasound measurements of the heel and tibia. Bone 25:49–54

    Article  PubMed  CAS  Google Scholar 

  29. Courtney AC, Wachtel EF, Myers ER, Hayes WC (1995) Age-related reductions in the strength of the femur tested in a fall-loading configuration. J Bone Joint Surg Am 77 :387–395

    PubMed  CAS  Google Scholar 

  30. Martin R, Burr D (1984) Non-invasive measurement of long bone cross-sectional moment of inertia by photon absorptiometry. J Biomech 17:195–201

    Article  PubMed  CAS  Google Scholar 

  31. Yoshikawa T, Turner CH, Peacock M, Slemenda CW, Weaver CM, Teegarden D, Markwardt P, Burr DB (1994) Geometric structure of the femoral neck measured using dual-energy X-ray absorptiometry. J Bone Miner Res 9:1053–1064

    PubMed  CAS  Google Scholar 

  32. Faulkner KG, Cummings SR, Black D, Palermo L, Gluer C-C, Genant HK (1993) Simple measurement of femoral geometry predicts hip fracture: The Study of Osteoporotic Fractures. J Bone Miner Res 10:1211–1217

    Google Scholar 

  33. Bonnick SL, Lewis LA (2002) The precision of AP spine, DualFemur™, and single femur bone density studies on the GE Lunar Prodigy, a DXA fan-beam device. J Clin Densitometry 5(Suppl):S48

    Google Scholar 

  34. Boudousq V, Goulart DM, Dinten JM, Caderas de Kerleau C, Thomas E, Mares O, Kotzki PO (2005) Image resolution and magnification using a cone beam densitometer : optimizing data acquisition for hip morphometric analysis. Osteoporos Int 16(7):813–822

    Article  PubMed  CAS  Google Scholar 

  35. Boonen S, Koutri R, Dequeker J, Aerssens J, Lowet G, Nijs J, Berbeke G, Lesaffre E, Geusens P (1995) Measurement of femoral geometry in type I and type II osteoporosis: differences in hip axis length consistent with heterogeneity in the pathogenesis of osteoporotic fractures. J Bone Miner Res 10:1908–1912

    Article  PubMed  CAS  Google Scholar 

  36. Peacock M, Turner CH, Liu G, Manatunga AK, Timmerman L, Johnston Jr, CC (1995) Better discrimination of hip fracture using bone density, geometry and architecture. Osteoporos Int 5:167–173

    Article  PubMed  CAS  Google Scholar 

  37. Duboeuf F, Hans D, Schott AM, Kotzki PO, Favier F, Marcelli C, Meunier PJ, Delmas PD (1997) Different morphometric and densitometric parameters predict cervical and trochanteric hip fracture: the EPIDOS Study. J Bone Miner Res 12:1895–1902

    Article  PubMed  CAS  Google Scholar 

  38. Rosso R, Minisola S (2000) Hip axis length in an Italian osteoporotic population. Br J Radiol 73:969–972

    PubMed  CAS  Google Scholar 

  39. Frisoli A, Paula AP, Szejnfeld V, Pinheiro MM, Castro CMH (2000) Comparison between hip axis length of elderly osteoporotic Brazilian women with and without hip fracture. J Bone Miner Res 15:S538

    Google Scholar 

  40. Gnudi S, Ripamonti C, Gualtieri G, Malavolta N (1999) Geometry of proximal femur in the prediction of hip fracture in osteoporotic women. Br J Radiol 72:729–733

    PubMed  CAS  Google Scholar 

  41. Gnudi S, Ripamonti C, Lisi L, Fini M, Giardino R, Giavaresi G (2002) Proximal femur geometry to detect and distinguish femoral neck fractures from trochanteric fractures in postmenpausal women. Osteoporos Int 13:69–73

    Article  PubMed  CAS  Google Scholar 

  42. Gnudi S, Malavolta N, Testi D, Viceconti M (2004) Differences in proximal femur geometry distinguish vertebral from femoral neck fractures in osteoporotic women. Br J Radiol 77:219–223

    Article  PubMed  CAS  Google Scholar 

  43. Gomez Alonzo C, Diaz Curiel M, Hawkins Carranza F, Perez Cano R, Diez Perez A, Multicenter Project for research in osteoporosis (2000) Femoral bone mineral density, neck-shaft angle and mean femoral neck width as predictors of hip fracture in men and women. Osteoporos Int 11:714–720

    Article  PubMed  Google Scholar 

  44. Dretakis EK, Papakitsou E, Kontakis GM, Dretakis K, Psarakis S, Asteriopoulos KA (1999) Bone mineral density, body mass index, and hip axis length in postmenopausal Cretan women with cervical and trochanteric fractures. Calcif Tissue Int 64:257–258

    Article  PubMed  CAS  Google Scholar 

  45. Pande I, O’Neill TW, Pritchard C, Scott DL, Woolf AD (2000) Bone mineral density, hip axis length and risk of hip fracture in men: results from the Cornwall Hip Fracture Study. Osteoporos Int 11:866–870

    Article  PubMed  CAS  Google Scholar 

  46. Beck TJ, Ruff CB, Scott WE Jr, Plato CC, Tobin PD, Quan CA (1992) Sex differences in geometry of the femoral neck with aging: A structural analysis of bone mineral data. Calcif Tissue Int 50:24–29

    Article  PubMed  CAS  Google Scholar 

  47. Beck TJ, Looker AC, Ruff CB, Sievanen H, Wahner HW (2000) Structural trends in the aging femoral neck and proximal shaft: analysis of the Third National Health and Nutrition Examination Survey dual-energy X-ray absorptiometry data. J Bone Miner Res 15:2297–2304

    Article  PubMed  CAS  Google Scholar 

  48. Beck TJ, Stone KL, Oreskovic TL, Hochberg MC, Nevitt MC, Genant HK, Cummings SR (2001) Effects of current and discontinued estrogen replacement therpy on hip structural geometry: the Study of Osteoporotic Fractures. J Bone Miner Res 16:2103–2110

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth G. Faulkner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faulkner, K.G., Wacker, W.K., Barden, H.S. et al. Femur strength index predicts hip fracture independent of bone density and hip axis length. Osteoporos Int 17, 593–599 (2006). https://doi.org/10.1007/s00198-005-0019-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-005-0019-4

Keywords

Navigation