Skip to main content

Advertisement

Log in

A role for antiangiogenic therapy in breast cancer

  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

The success of the angiogenesis inhibitor bevacizumab, the vascular endothelial growth factor antagonist that was recently shown to significantly improve the survival of patients with metastatic colon cancer when administered in combination with conventional chemotherapy, has provided proof of principle in clinical trials that antiangiogenesis can be an important strategy in the treatment of cancer. This report reviews the contemporary therapeutic approaches for breast cancer, the essential role that angiogenesis plays in the initiation and progression of this disease, and the strategies that should be considered to make antiangiogenic therapy a successful component of breast cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Folkman J: Angiogenesis and breast cancer. J Clin Oncol 1994, 12:441–443.

    PubMed  CAS  Google Scholar 

  2. Folkman J: The influence of angiogenesis research on management of patients with breast cancer. Breast Cancer Res Treat 1995, 36:109–118.

    Article  PubMed  CAS  Google Scholar 

  3. Folkman J: Angiogenesis in breast cancer. In The Breast. Edited by Bland KC. Philadelphia: WB Saunders; 1998:586–603. A highly comprehensive review on the role of angiogenesis in breast cancer.

    Google Scholar 

  4. Rayson D, Vantyghem SA, Chambers AF: Angiogenesis as a target for breast cancer therapy. J Mammary Gland Biol Neoplasia 1999, 4:415–423.

    Article  PubMed  CAS  Google Scholar 

  5. Wu I, Moses MA: Angiogenic molecules and mechanisms in breast cancer. Curr Oncol Rep 2000, 2:566–571.

    Article  PubMed  CAS  Google Scholar 

  6. Fisher B, Dignam J, Wolmark N, et al.: Lumpectomy and radiation therapy for the treatment of intraductal breast cancer: findings from National Surgical Adjuvant Breast and Bowel Project B-17. J Clin Oncol 1998, 16:441–452.

    PubMed  CAS  Google Scholar 

  7. Julien JP, Bijker N, Fentiman IS, et al.: Radiotherapy in breastconserving treatment for ductal carcinoma in situ: first results of the EORTC randomized phase III trial 10853. EORTC Breast Cancer Cooperative Group and EORTC Radiotherapy Group. Lancet 2000, 355:528–533.

    Article  PubMed  CAS  Google Scholar 

  8. Lingos TI, Recht A, Vicini F, et al.: Radiation pneumonitis in breast cancer patients treated with conservative surgery and radiation therapy. Int J Radiat Oncol Biol Phys 1991, 21:355–360.

    PubMed  CAS  Google Scholar 

  9. Favourable and unfavourable effects on long-term survival of radiotherapy for early breast cancer: an overview of the randomized trials. Early Breast Cancer Trialists’ Collaborative Group. Lancet 2000, 355:1757-1770.

  10. Fisher B, Anderson S, Tan-Chiu E, et al.: Tamoxifen and chemotherapy for axillary node-negative, estrogen receptor-negative breast cancer: findings from National Surgical Adjuvant Breast and Bowel Project B-23. J Clin Oncol 2001, 19:931–942.

    PubMed  CAS  Google Scholar 

  11. Tamoxifen for early breast cancer: an overview of the randomised trials. Early Breast Cancer Trialists’ Collaborative Group. Lancet 1998, 351:1451-1467.

  12. Fisher B, Dignam J, Wolmark N, et al.: Tamoxifen and chemotherapy for lymph node-negative, estrogen receptor-positive breast cancer. J Natl Cancer Inst 1997, 89:1673–1682.

    Article  PubMed  CAS  Google Scholar 

  13. Fisher B, Redmond C, Legault-Poisson S, et al.: Postoperative chemotherapy and tamoxifen compared with tamoxifen alone in the treatment of positive-node breast cancer patients aged 50 years and older with tumors responsive to tamoxifen: results from the National Surgical Adjuvant Breast and Bowel Project B-16. J Clin Oncol 1990, 8:1005–1018.

    PubMed  CAS  Google Scholar 

  14. Saphner T, Tormey DC, Gray R: Venous and arterial thrombosis in patients who received adjuvant therapy for breast cancer. J Clin Oncol 1991, 9:286–294.

    PubMed  CAS  Google Scholar 

  15. Fornander T, Rutqvist LE, Cedermark B, et al.: Adjuvant tamoxifen in early breast cancer: occurrence of new primary cancers. Lancet 1989, 1:117–120.

    Article  PubMed  CAS  Google Scholar 

  16. Shushan A, Peretz T, Uziely B, et al.: Ovarian cysts in premenopausal and postmenopausal tamoxifen-treated women with breast cancer. Am J Obstet Gynecol 1996, 174:141–144.

    Article  PubMed  CAS  Google Scholar 

  17. Powles TJ, Hickish T, Kanis JA, et al.: Effect of tamoxifen on bone mineral density measured by dual-energy x-ray absorptiometry in healthy premenopausal and postmenopausal women. J Clin Oncol 1996, 14:78–84.

    PubMed  CAS  Google Scholar 

  18. Pritchard KI, Paterson AH, Paul NA, et al.: Increased thromboembolic complications with concurrent tamoxifen and chemotherapy in a randomized trial of adjuvant therapy for women with breast cancer. National Cancer Institute of Canada Clinical Trials Group Breast Cancer Site Group. J Clin Oncol 1996, 14:2731–2737.

    PubMed  CAS  Google Scholar 

  19. Shapiro CL, Manola J, Leboff M: Ovarian failure after adjuvant chemotherapy is associated with rapid bone loss in women with early-stage breast cancer. J Clin Oncol 2001, 19:3306–3311.

    PubMed  CAS  Google Scholar 

  20. Peters W, Rosner G, Vrendenburgh J, et al.: A prospective, randomized comparison of two doses of combination alkylating agents (AA) as consolidation after CAF in high-risk primary breast cancer involving ten or more axillary lymph nodes (LN): preliminary results of CALGB 9082/SWOG 9114/NCIC MA-13. Proc ASCO 1999, 18:A-2.

    Google Scholar 

  21. Cobleigh MA, Vogel CL, Tripathy D, et al.: Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol 1999, 17:2639–2648.

    PubMed  CAS  Google Scholar 

  22. Slamon DJ, Leyland-Jones B, Shak S, et al.: Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 2001, 344:783–792. An example of an emerging breast cancer therapy in combination with conventional therapies.

    Article  PubMed  CAS  Google Scholar 

  23. Seidman A, Hudis C, Pierri MK, et al.: Cardiac dysfunction in the trastuzumab clinical trials experience. J Clin Oncol 2002, 20:1215–1221.

    Article  PubMed  CAS  Google Scholar 

  24. Fang J, Shing Y, Wiederschain D, et al.: Matrix metalloproteinase-2 is required for the switch to the angiogenic phenotype in a tumor model. Proc Natl Acad Sci U S A 2000, 97:3884–3889.

    Article  PubMed  CAS  Google Scholar 

  25. Bergers G, Brekken R, McMahon G, et al.: Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2000, 2:737–44.

    Article  PubMed  CAS  Google Scholar 

  26. Hanahan D, Folkman J: Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 1996, 86:353–364.

    Article  PubMed  CAS  Google Scholar 

  27. Yoshiji H, Harris SR, Thorgeirsson UP: Vascular endothelial growth factor is essential for initial but not continued in vivo growth of human breast carcinoma cells. Cancer Res 1997, 57:3924–3928.

    PubMed  CAS  Google Scholar 

  28. Fang J, Yan L, Shing Y, et al.: HIF-1alpha-mediated up-regulation of vascular endothelial growth factor, independent of basic fibroblast growth factor, is important in the switch to the angiogenic phenotype during early tumorigenesis. Cancer Res 2001, 61:5731–5735.

    PubMed  CAS  Google Scholar 

  29. Green JE, Shibata MA, Yoshidome K, et al.: The C3(1)/SV40 Tantigen transgenic mouse model of mammary cancer: ductal epithelial cell targeting with multistage progression to carcinoma. Oncogene 2000, 19:1020–1027.

    Article  PubMed  CAS  Google Scholar 

  30. Li M, Lewis B, Capuco AV, et al.: WAP-TAg transgenic mice and the study of dysregulated cell survival, proliferation, and mutation during breast carcinogenesis. Oncogene 2000, 19:1010–1019.

    Article  PubMed  CAS  Google Scholar 

  31. Yokoyama Y, Green JE, Sukhatme VP, et al.: Effect of endostatin on spontaneous tumorigenesis of mammary adenocarcinoma in a transgenic mouse model. Cancer Res 2000, 60:4362–4365.

    PubMed  CAS  Google Scholar 

  32. Calvo A, Yokoyama Y, Smith LE, et al.: Inhibition of the mammary carcinoma angiogenic switch in C3(1)/SV40 transgenic mice by a mutated form of human endostatin. Int J Cancer 2002, 101:224–234.

    Article  PubMed  CAS  Google Scholar 

  33. O’Reilly MS, Boehm T, Shing Y, et al.: Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 1997, 88:277–285.

    Article  PubMed  Google Scholar 

  34. Perletti G, Concari P, Giardini R, et al.: Antitumor activity of endostatin against carcinogen-induced rat primary mammary tumors. Cancer Res 2000, 60:1793–1796.

    PubMed  CAS  Google Scholar 

  35. Relf M, LeJeune S, Scott PA, et al.: Expression of the angiogenic factors vascular endothelial cell growth factor, acidic and basic fibroblast growth factor, tumor growth factor beta-1, platelet-derived endothelial cell growth factor, placenta growth factor, and pleiotrophin in human primary breast cancer and its relation to angiogenesis. Cancer Res 1997, 57:963–969.

    PubMed  CAS  Google Scholar 

  36. Moses MA, Wiederschain D, Loughlin KR, et al.: Increased incidence of matrix metalloproteinases in urine of cancer patients. Cancer Res 1998, 58:1395–1399.

    PubMed  CAS  Google Scholar 

  37. O’Reilly MS, Wiederschain D, Stetler-Stevenson WG, et al.: Regulation of angiostatin production by matrix metalloproteinase-2 in a model of concomitant resistance. J Biol Chem 1999, 274:29568–29571.

    Article  PubMed  Google Scholar 

  38. Camphausen K, Moses MA, Beecken WD, et al.: Radiation therapy to a primary tumor accelerates metastatic growth in mice. Cancer Res 2001, 61:2207–2211.

    PubMed  CAS  Google Scholar 

  39. Moses MA, Sudhalter J, Langer R: Identification of an inhibitor of neovascularization from cartilage. Science 1990, 248:1408–1410.

    Article  PubMed  CAS  Google Scholar 

  40. Johnson MD, Kim HR, Chesler L, et al.: Inhibition of angiogenesis by tissue inhibitor of metalloproteinase. J Cell Physiol 1994, 160:194–202.

    Article  PubMed  CAS  Google Scholar 

  41. Anand-Apte B, Pepper MS, Voest E, et al.: Inhibition of angiogenesis by tissue inhibitor of metalloproteinase-3. Invest Ophthalmol Vis Sci 1997, 38(5):817–823.

    PubMed  CAS  Google Scholar 

  42. Montesano R, Orci L: Tumor-promoting phorbol esters induce angiogenesis in vitro. Cell 1985, 42(2):469–477.

    Article  PubMed  CAS  Google Scholar 

  43. Mignatti P, Tsuboi R, Robbins E, et al.: In vitro angiogenesis on the human amniotic membrane: requirement for basic fibroblast growth factor-induced proteinases. J Cell Biol 1989, 108:671–682.

    Article  PubMed  CAS  Google Scholar 

  44. Murphy AN, Unsworth EJ, Stetler-Stevenson WG: Tissue inhibitor of metalloproteinases-2 inhibits bFGF-induced human microvascular endothelial cell proliferation. J Cell Physiol 1993, 157:351–358.

    Article  PubMed  CAS  Google Scholar 

  45. Herron GS, Banda MJ, Clark EJ, et al.: Secretion of metalloproteinases by stimulated capillary endothelial cells. II. Expression of collagenase and stromelysin activities is regulated by endogenous inhibitors. J Biol Chem 1986, 261:2814–2818.

    PubMed  CAS  Google Scholar 

  46. Moscatelli D, Jaffe E, Rifkin DB: Tetradecanoyl phorbol acetate stimulates latent collagenase production by cultured human endothelial cells. Cell 1980, 20:343–351.

    Article  PubMed  CAS  Google Scholar 

  47. Gross JL, Moscatelli D, Jaffe EA, et al.: Plasminogen activator and collagenase production by cultured capillary endothelial cells. J Cell Biol 1982, 95:974–981.

    Article  PubMed  CAS  Google Scholar 

  48. Unemori EN, Bouhana KS, Werb Z: Vectorial secretion of extracellular matrix proteins, matrix-degrading proteinases, and tissue inhibitor of metalloproteinases by endothelial cells. J Biol Chem 1990, 265:445–451.

    PubMed  CAS  Google Scholar 

  49. Hanemaaijer R, Koolwijk P, le Clercq L, et al.: Regulation of matrix metalloproteinase expression in human vein and microvascular endothelial cells: effects of tumour necrosis factor alpha, interleukin 1 and phorbol ester. Biochem J 1993, 296:803–809.

    PubMed  CAS  Google Scholar 

  50. Fisher C, Gilbertson-Beadling S, Powers EA, et al.: Interstitial collagenase is required for angiogenesis in vitro. Dev Biol 1994, 162:499–510.

    Article  PubMed  CAS  Google Scholar 

  51. Unemori EN, Ferrara N, Bauer EA, et al.: Vascular endothelial growth factor induces interstitial collagenase expression in human endothelial cells. J Cell Physiol 1992, 153:557–562.

    Article  PubMed  CAS  Google Scholar 

  52. Lamoreaux WJ, Fitzgerald ME, Reiner A, et al.: Vascular endothelial growth factor increases release of gelatinase A and decreases release of tissue inhibitor of metalloproteinases by microvascular endothelial cells in vitro. Microvasc Res 1998, 55:29–42.

    Article  PubMed  CAS  Google Scholar 

  53. Zucker S, Mirza H, Conner CE, et al.: Vascular endothelial growth factor induces tissue factor and matrix metalloproteinase production in endothelial cells: conversion of prothrombin to thrombin results in progelatinase A activation and cell proliferation. Int J Cancer 1998, 75:780–786.

    Article  PubMed  CAS  Google Scholar 

  54. Yan L, Borregaard N, Kjeldsen L, et al.: The high molecular weight urinary matrix metalloproteinase (MMP) activity is a complex of gelatinase B/MMP-9 and neutrophil gelatinaseassociated lipocalin (NGAL): modulation of MMP-9 activity by NGAL. J Biol Chem 2001, 276:37258–37265.

    Article  PubMed  CAS  Google Scholar 

  55. Nguyen M, Watanabe H, Budson AE, et al.: Elevated levels of the angiogenic peptide basic fibroblast growth factor in urine of bladder cancer patients. J Natl Cancer Inst 1993, 85:241–242.

    Article  PubMed  CAS  Google Scholar 

  56. Nguyen M, Watanabe H, Budson AE, et al.: Elevated levels of an angiogenic peptide, basic fibroblast growth factor, in the urine of patients with a wide spectrum of cancers. J Natl Cancer Inst 1994, 86:356–361.

    Article  PubMed  CAS  Google Scholar 

  57. Ezekowitz A, Mulliken J, Folkman J: Interferon alpha therapy of haemangiomas in newborns and infants. Br J Haematol 1991, 79(Suppl 1):67–68.

    Article  PubMed  Google Scholar 

  58. Chang E, Boyd A, Nelson CC, et al.: Successful treatment of infantile hemangiomas with interferon-alpha-2b. J Pediatr Hematol Oncol 1997, 19:237–244.

    Article  PubMed  CAS  Google Scholar 

  59. Weidner N, Semple JP, Welch WR, et al.: Tumor angiogenesis and metastasis-correlation in invasive breast carcinoma. N Engl J Med 1991, 324:1–8.

    Article  PubMed  CAS  Google Scholar 

  60. Hahnfeldt P, Folkman J, Hlatky L: Minimizing long-term tumor burden: the logic for metronomic chemotherapeutic dosing and its antiangiogenic basis. J Theor Biol 2003, 220:545–554.

    Article  PubMed  Google Scholar 

  61. McCarthy M: Antiangiogenesis drug promising for metastatic colorectal cancer. Lancet 2003, 361:1959. Report on successful antiangiogenic therapy using bevacizumab for treatment of colorectal cancer.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moses, M.A., Harper, J. & Fernández, C.A. A role for antiangiogenic therapy in breast cancer. Curr Oncol Rep 6, 42–48 (2004). https://doi.org/10.1007/s11912-996-0008-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-996-0008-6

Keywords

Navigation