Skip to main content

Advertisement

Log in

Translocations and Gene Fusions in Sinonasal Malignancies

  • HEAD AND NECK CANCERS (EY HANNA, SECTION EDITOR)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

During the past few years there has been an expansion in our understanding of gene fusions and translocations involved in cancer of the sinonasal tract. Here we review the downstream biologic effects, clinical characteristics, and pathologic features of these tumors. The molecular consequences and neo-antigens resulting from these chromosomal aberrations are considered and targets for current and future clinical trials discussed.

Recent Findings

Several new, clinically relevant, chromosomal aberrations have been discovered and evaluated to varying degrees in sinonasal tumors including DEK::AFF2, BRD4::NUT, ADCK4::NUMBL, and ETV6::NTRK3.

Summary

Sinonasal malignancies demonstrate a diverse genetic landscape and varying clinical courses. Recent studies illustrate that gene fusions and translocations may play a role in carcinogenesis in certain sinonasal tumor subtypes and may be used to develop new biomarker-driven and patient-centered treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Turner JH, Reh DD. Incidence and survival in patients with sinonasal cancer: a historical analysis of population-based data. Head Neck. 2012;34(6):877–85. https://doi.org/10.1002/hed.21830.

    Article  PubMed  Google Scholar 

  2. Sanghvi S, Khan MN, Patel NR, Yeldandi S, Baredes S, Eloy JA. Epidemiology of sinonasal squamous cell carcinoma: a comprehensive analysis of 4994 patients. Laryngoscope. 2014;124(1):76–83. https://doi.org/10.1002/lary.24264.

    Article  PubMed  Google Scholar 

  3. Dutta R, Dubal PM, Svider PF, Liu JK, Baredes S, Eloy JA. Sinonasal malignancies: a population-based analysis of site-specific incidence and survival. Laryngoscope. 2015;125(11):2491–7. https://doi.org/10.1002/lary.25465.

    Article  PubMed  Google Scholar 

  4. Hermsen MA, Riobello C, García-Marín R, Cabal VN, Suárez-Fernández L, López F, et al. Translational genomics of sinonasal cancers. Semin Cancer Biol. 2020;61:101–9. https://doi.org/10.1016/j.semcancer.2019.09.016. A comprehensive overview of the genetics of sinonasal tumors; exploring histology, clinical features, and many potential actionable mutations for targeted therapies.

    Article  CAS  PubMed  Google Scholar 

  5. PDQ Adult Treatment Editorial Board. Paranasal Sinus and Nasal Cavity Cancer Treatment (Adult) (PDQ®): Health Professional Version. In: PDQ Cancer Information Summaries. Bethesda (MD): National Cancer Institute (US); 2002.

  6. Lopez DC, Wadley AE, London NR Jr. Emerging concepts in sinonasal tumor research. Curr Opin Otolaryngol Head Neck Surg. 2022;30(1):33–9. https://doi.org/10.1097/moo.0000000000000776.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Boveri, T. Zur Frage der Entstehung maligner Tumoren. Jena: Fisher (Translation Boveri, T. (1929). The origin of malignant tumors. Baltimore: Williams and Wilkins); 1914.

  8. Tjio JH, Levan A. The chromosome number of man. Problems of birth defects: from Hippocrates to Thalidomide and After. 1977;112–8.

  9. Rowley JD. A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature. 1973;243(5405):290–3.

    Article  CAS  PubMed  Google Scholar 

  10. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, et al. Signatures of mutational processes in human cancer. Nature. 2013;500(7463):415–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW. Cancer genome landscapes. Science. 2013;339(6127):1546–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Watson IR, Takahashi K, Futreal PA, Chin L. Emerging patterns of somatic mutations in cancer. Nat Rev Genet. 2013;14(10):703–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mertens F, Johansson B, Fioretos T, Mitelman F. The emerging complexity of gene fusions in cancer. Nat Rev Cancer. 2015;15(6):371–81. https://doi.org/10.1038/nrc3947.

    Article  CAS  PubMed  Google Scholar 

  14. Tsimberidou AM, Fountzilas E, Nikanjam M, Kurzrock R. Review of precision cancer medicine: evolution of the treatment paradigm. Cancer Treat Rev. 2020;86:102019. https://doi.org/10.1016/j.ctrv.2020.102019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yang W, Lee KW, Srivastava RM, Kuo F, Krishna C, Chowell D, et al. Immunogenic neoantigens derived from gene fusions stimulate T cell responses. Nat Med. 2019;25(5):767–75. https://doi.org/10.1038/s41591-019-0434-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chłopek M, Lasota J, Thompson LDR, Szczepaniak M, Kuźniacka A, Hińcza K, et al. Alterations in key signaling pathways in sinonasal tract melanoma. A molecular genetics and immunohistochemical study of 90 cases and comprehensive review of the literature. Mod Pathol. 2022;35(11):1609–17. https://doi.org/10.1038/s41379-022-01122-7.

  17. Heft Neal ME, Birkeland AC, Bhangale AD, Zhai J, Kulkarni A, Foltin SK, et al. Genetic analysis of sinonasal undifferentiated carcinoma discovers recurrent SWI/SNF alterations and a novel PGAP3-SRPK1 fusion gene. BMC Cancer. 2021;21(1):636. https://doi.org/10.1186/s12885-021-08370-x. A model investigation that demonstrates how chromosomal abberations can be studied through downstream molecular analysis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Andreasen S, Kiss K, Melchior LC, Laco J. The ETV6-RET gene fusion is found in ETV6-rearranged low-grade sinonasal adenocarcinoma without NTRK3 involvement. Am J Surg Pathol. 2018;42(7):985–8. https://doi.org/10.1097/pas.0000000000001069.

    Article  PubMed  Google Scholar 

  19. Kuo YJ, Lewis JS Jr, Zhai C, Chen YA, Chernock RD, Hsieh MS, et al. DEK-AFF2 fusion-associated papillary squamous cell carcinoma of the sinonasal tract: clinicopathologic characterization of seven cases with deceptively bland morphology. Mod Pathol. 2021;34(10):1820–30. https://doi.org/10.1038/s41379-021-00846-2.

    Article  CAS  PubMed  Google Scholar 

  20. Rooper LM, Agaimy A, Dickson BC, Dueber JC, Eberhart CG, Gagan J, et al. DEK-AFF2 carcinoma of the sinonasal region and skull base: detailed clinicopathologic characterization of a distinctive entity. Am J Surg Pathol. 2021;45(12):1682–93. https://doi.org/10.1097/pas.0000000000001741. A thorough characterization of an emerging tumor type including histological and immuhistochemical analysis. A foundation for future studies in describing novel cancer subtypes.

    Article  PubMed  Google Scholar 

  21. Bishop JA, Gagan J, Paterson C, McLellan D, Sandison A. Nonkeratinizing squamous cell carcinoma of the sinonasal tract with DEK-AFF2: further solidifying an emerging entity. Am J Surg Pathol. 2021;45(5):718–20. https://doi.org/10.1097/pas.0000000000001596.

    Article  PubMed  Google Scholar 

  22. Todorovic E, Truong T, Eskander A, Lin V, Swanson D, Dickson BC, et al. Middle ear and temporal bone nonkeratinizing squamous cell carcinomas with DEK-AFF2 fusion: an emerging entity. Am J Surg Pathol. 2020;44(9):1244–50. https://doi.org/10.1097/pas.0000000000001498.

    Article  PubMed  Google Scholar 

  23. Hu HG, Scholten I, Gruss C, Knippers R. The distribution of the DEK protein in mammalian chromatin. Biochem Biophys Res Commun. 2007;358(4):1008–14. https://doi.org/10.1016/j.bbrc.2007.05.019.

    Article  CAS  PubMed  Google Scholar 

  24. Waldmann T, Scholten I, Kappes F, Hu HG, Knippers R. The DEK protein—an abundant and ubiquitous constituent of mammalian chromatin. Gene. 2004;343(1):1–9. https://doi.org/10.1016/j.gene.2004.08.029.

    Article  CAS  PubMed  Google Scholar 

  25. Bensaid M, Melko M, Bechara EG, Davidovic L, Berretta A, Catania MV, et al. FRAXE-associated mental retardation protein (FMR2) is an RNA-binding protein with high affinity for G-quartet RNA forming structure. Nucleic Acids Res. 2009;37(4):1269–79. https://doi.org/10.1093/nar/gkn1058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Taverna C, Agaimy A, Franchi A. Towards a molecular classification of sinonasal carcinomas: clinical implications and opportunities. Cancers. MDPI AG; 2022;14(6):1463. https://doi.org/10.3390/cancers14061463.

  27. Brown CS, Abi Hachem R, Pendse A, Madden JF, Francis HW. Low-grade papillary Schneiderian carcinoma of the sinonasal cavity and temporal bone. Ann Otol Rhinol Laryngol. 2018;127(12):974–7. https://doi.org/10.1177/0003489418803391.

    Article  PubMed  Google Scholar 

  28. Carnevale S, Ferrario G, Sovardi F, Benazzo M, Morbini P. Low-grade papillary Schneiderian carcinoma: report of a case with molecular characterization. Head Neck Pathol. 2020;14(3):799–802. https://doi.org/10.1007/s12105-019-01067-5.

    Article  PubMed  Google Scholar 

  29. Jeong HJ, Roh J, Lee BJ, Cho KJ. Low-grade papillary Schneiderian carcinoma: a case report. Head Neck Pathol. 2018;12(1):131–5. https://doi.org/10.1007/s12105-017-0832-z.

    Article  PubMed  Google Scholar 

  30. Williamson A, Sharma R, Cooper L, McGarry G. Low-grade papillary schneiderian carcinoma; rare or under-recognised? Otolaryngology Case Reports. 2019;11:100107.

    Article  Google Scholar 

  31. Stelow EB, Bellizzi AM, Taneja K, Mills SE, Legallo RD, Kutok JL, et al. NUT rearrangement in undifferentiated carcinomas of the upper aerodigestive tract. Am J Surg Pathol. 2008;32(6):828–34. https://doi.org/10.1097/PAS.0b013e31815a3900.

    Article  PubMed  Google Scholar 

  32. French CA. Demystified molecular pathology of NUT midline carcinomas. J Clin Pathol. 2010;63(6):492–6. https://doi.org/10.1136/jcp.2007.052902.

    Article  PubMed  Google Scholar 

  33. French C. NUT midline carcinoma. Nat Rev Cancer. 2014;14(3):149–50. https://doi.org/10.1038/nrc3659.

    Article  CAS  PubMed  Google Scholar 

  34. Schaefer IM, Dal Cin P, Landry LM, Fletcher CDM, Hanna GJ, French CA. CIC-NUTM1 fusion: a case which expands the spectrum of NUT-rearranged epithelioid malignancies. Gene Chromosomes Cancer. 2018;57(9):446–51. https://doi.org/10.1002/gcc.3.

    Article  CAS  Google Scholar 

  35. Chau NG, Ma C, Danga K, Al-Sayegh H, Nardi V, Barrette R, et al. An anatomical site and genetic-based prognostic model for patients with nuclear protein in testis (NUT) midline carcinoma: analysis of 124 patients. JNCI Cancer Spectr. 2020;4(2):pkz094. https://doi.org/10.1093/jncics/pkz094.

    Article  PubMed  Google Scholar 

  36. Amisaki M, Tsuchiya H, Sakabe T, Fujiwara Y, Shiota G. Identification of genes involved in the regulation of TERT in hepatocellular carcinoma. Cancer Sci. 2019;110(2):550–60. https://doi.org/10.1111/cas.13884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Patel MC, Debrosse M, Smith M, Dey A, Huynh W, Sarai N, et al. BRD4 coordinates recruitment of pause release factor P-TEFb and the pausing complex NELF/DSIF to regulate transcription elongation of interferon-stimulated genes. Mol Cell Biol. 2013;33(12):2497–507. https://doi.org/10.1128/mcb.01180-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wu SY, Lee AY, Lai HT, Zhang H, Chiang CM. Phospho switch triggers Brd4 chromatin binding and activator recruitment for gene-specific targeting. Mol Cell. 2013;49(5):843–57. https://doi.org/10.1016/j.molcel.2012.12.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang R, Li Q, Helfer CM, Jiao J, You J. Bromodomain protein Brd4 associated with acetylated chromatin is important for maintenance of higher-order chromatin structure. J Biol Chem. 2012;287(14):10738–52. https://doi.org/10.1074/jbc.M111.323493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Stirnweiss A, McCarthy K, Oommen J, Crook ML, Hardy K, Kees UR, et al. A novel BRD4-NUT fusion in an undifferentiated sinonasal tumor highlights alternative splicing as a contributing oncogenic factor in NUT midline carcinoma. Oncogenesis. 2015;4(11):e174-e. https://doi.org/10.1038/oncsis.2015.33.

    Article  CAS  Google Scholar 

  41. Shehata BM, Steelman CK, Abramowsky CR, Olson TA, French CA, Saxe DF, et al. NUT midline carcinoma in a newborn with multiorgan disseminated tumor and a 2-year-old with a pancreatic/hepatic primary. Pediatr Dev Pathol. 2010;13(6):481–5. https://doi.org/10.2350/09-10-0727-cr.1.

    Article  PubMed  Google Scholar 

  42. Minato H, Kobayashi E, Nakada S, Kurose N, Tanaka M, Tanaka Y, et al. Sinonasal NUT carcinoma: clinicopathological and cytogenetic analysis with autopsy findings. Hum Pathol. 2018;71:157–65. https://doi.org/10.1016/j.humpath.2017.10.011.

    Article  PubMed  Google Scholar 

  43. French CA. NUT carcinoma: clinicopathologic features, pathogenesis, and treatment. Pathol Int. 2018;68(11):583–95. https://doi.org/10.1111/pin.12727.

    Article  CAS  PubMed  Google Scholar 

  44. Agaimy A, Franchi A, Lund VJ, Skálová A, Bishop JA, Triantafyllou A, et al. Sinonasal undifferentiated carcinoma (SNUC): from an entity to morphologic pattern and back again—a historical perspective. Adv Anat Pathol. 2020;27(2):51–60. https://doi.org/10.1097/pap.0000000000000258.

    Article  PubMed  Google Scholar 

  45. Bellizzi AM, Bruzzi C, French CA, Stelow EB. The cytologic features of NUT midline carcinoma. Cancer Cytopathology: J Am Cancer Soc. 2009;117(6):508–15.

    Google Scholar 

  46. Bishop JA, Westra WH. NUT midline carcinomas of the sinonasal tract. Am J Surg Pathol. 2012;36(8):1216–21. https://doi.org/10.1097/PAS.0b013e318254ce54.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Suzuki S, Kurabe N, Minato H, Ohkubo A, Ohnishi I, Tanioka F, et al. A rare Japanese case with a NUT midline carcinoma in the nasal cavity: a case report with immunohistochemical and genetic analyses. Pathol-Res Pract. 2014;210(6):383–8.

    Article  PubMed  Google Scholar 

  48. Stirnweiss A, McCarthy K, Oommen J, Crook ML, Hardy K, Kees UR, et al. A novel BRD4-NUT fusion in an undifferentiated sinonasal tumor highlights alternative splicing as a contributing oncogenic factor in NUT midline carcinoma. Oncogenesis. 2015;4(11):e174. https://doi.org/10.1038/oncsis.2015.33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chau NG, Hurwitz S, Mitchell CM, Aserlind A, Grunfeld N, Kaplan L, et al. Intensive treatment and survival outcomes in NUT midline carcinoma of the head and neck. Cancer. 2016;122(23):3632–40.

    Article  PubMed  Google Scholar 

  50. Riess JW, Rahman S, Kian W, Edgerly C, Heilmann AM, Madison R, et al. Genomic profiling of solid tumors harboring BRD4-NUT and response to immune checkpoint inhibitors. Transl Oncol. 2021;14(10):101184. https://doi.org/10.1016/j.tranon.2021.101184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Filippakopoulos P, Qi J, Picaud S, Shen Y, Smith WB, Fedorov O, et al. Selective inhibition of BET bromodomains. Nature. 2010;468(7327):1067–73. https://doi.org/10.1038/nature09504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Halder TG, Soldi R, Sharma S. Bromodomain and extraterminal domain protein bromodomain inhibitor based cancer therapeutics. Curr Opin Oncol. 2021;33(5):526–31. https://doi.org/10.1097/cco.0000000000000763.

    Article  CAS  PubMed  Google Scholar 

  53. Takahashi Y, Bell D, Xie T-X, Ferrarotto R, Gunn B, Raza S, et al. Establishment of novel sinonasal nut carcinoma cell lines. J Neurol Surg Part B: Skull Base. 2022;83(S 01):A018.

    Google Scholar 

  54. Thompson LD, Wieneke JA, Miettinen M. Sinonasal tract and nasopharyngeal melanomas: a clinicopathologic study of 115 cases with a proposed staging system. Am J Surg Pathol. 2003;27(5):594–611. https://doi.org/10.1097/00000478-200305000-00004.

    Article  PubMed  Google Scholar 

  55. Lee J, Lee J, Hong SD, Jang K-T, Lee SJ. FGFR3-TACC3: A novel gene fusion in malignant melanoma. Precis Future Med. 2018;2(2):71–5. https://doi.org/10.23838/pfm.2018.00044.

    Article  CAS  Google Scholar 

  56. Moran JMT, Le LP, Nardi V, Golas J, Farahani AA, Signorelli S, et al. Identification of fusions with potential clinical significance in melanoma. Mod Pathol. 2022. https://doi.org/10.1038/s41379-022-01138-z.

    Article  PubMed  Google Scholar 

  57. Ashraf S, Gee HY, Woerner S, Xie LX, Vega-Warner V, Lovric S, et al. ADCK4 mutations promote steroid-resistant nephrotic syndrome through CoQ10 biosynthesis disruption. J Clin Invest. 2013;123(12):5179–89. https://doi.org/10.1172/jci69000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ma Q, Zhou L, Shi H, Huo K. NUMBL interacts with TAB2 and inhibits TNFalpha and IL-1beta-induced NF-kappaB activation. Cell Signal. 2008;20(6):1044–51. https://doi.org/10.1016/j.cellsig.2008.01.015.

    Article  CAS  PubMed  Google Scholar 

  59. Zhou L, Ma Q, Shi H, Huo K. NUMBL interacts with TRAF6 and promotes the degradation of TRAF6. Biochem Biophys Res Commun. 2010;392(3):409–14. https://doi.org/10.1016/j.bbrc.2010.01.037.

    Article  CAS  PubMed  Google Scholar 

  60. Egashira S, Jinnin M, Makino K, Ajino M, Shimozono N, Okamoto S, et al. Recurrent fusion gene ADCK4-NUMBL in cutaneous squamous cell carcinoma mediates cell proliferation. J Invest Dermatol. 2019;139(4):954–7. https://doi.org/10.1016/j.jid.2018.09.030.

    Article  CAS  PubMed  Google Scholar 

  61. Hur K, Zhang P, Yu A, Kim-Orden N, Kysh L, Wrobel B. Open versus endoscopic approach for sinonasal melanoma: a systematic review and meta-analysis. Am J Rhinol Allergy. 2019;33(2):162–9. https://doi.org/10.1177/1945892418822637.

    Article  PubMed  Google Scholar 

  62. Amit M, Abdelmeguid AS, Watcherporn T, Takahashi H, Tam S, Bell D, et al. Induction chemotherapy response as a guide for treatment optimization in sinonasal undifferentiated carcinoma. J Clin Oncol. 2019;37(6):504–12. https://doi.org/10.1200/jco.18.00353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. London NR Jr, Mohyeldin A, Daoud G, Gamez ME, Blakaj D, Bonomi M, et al. Sinonasal undifferentiated carcinoma: institutional trend toward induction chemotherapy followed by definitive chemoradiation. Head Neck. 2020;42(11):3197–205. https://doi.org/10.1002/hed.26357.

    Article  PubMed  Google Scholar 

  64. Takahashi Y, Kupferman ME, Bell D, Jiffar T, Lee JG, Xie TX, et al. Establishment and characterization of novel cell lines from sinonasal undifferentiated carcinoma. Clin Cancer Res. 2012;18(22):6178–87. https://doi.org/10.1158/1078-0432.Ccr-12-1876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hirata T, Mishra SK, Nakamura S, Saito K, Motooka D, Takada Y, et al. Identification of a Golgi GPI-N-acetylgalactosamine transferase with tandem transmembrane regions in the catalytic domain. Nat Commun. 2018;9(1):405. https://doi.org/10.1038/s41467-017-02799-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tronchère H, Wang J, Fu XD. A protein related to splicing factor U2AF35 that interacts with U2AF65 and SR proteins in splicing of pre-mRNA. Nature. 1997;388(6640):397–400. https://doi.org/10.1038/41137.

    Article  PubMed  Google Scholar 

  67. Xu X, Wei Y, Wang S, Luo M, Zeng H. Serine-arginine protein kinase 1 (SRPK1) is elevated in gastric cancer and plays oncogenic functions. Oncotarget. 2017;8(37):61944–57. https://doi.org/10.18632/oncotarget.18734.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Wang H, Wang C, Tian W, Yao Y. The crucial role of SRPK1 in IGF-1-induced EMT of human gastric cancer. Oncotarget. 2017;8(42):72157–66. https://doi.org/10.18632/oncotarget.20048.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Andreasen S, Skálová A, Agaimy A, Bishop JA, Laco J, Leivo I, et al. ETV6 gene rearrangements characterize a morphologically distinct subset of sinonasal low-grade non-intestinal-type adenocarcinoma: a novel translocation-associated carcinoma restricted to the sinonasal tract. Am J Surg Pathol. 2017;41(11):1552–60. https://doi.org/10.1097/pas.0000000000000912.

    Article  PubMed  Google Scholar 

  70. Xu B, Aryeequaye R, Wang L, Katabi N. Sinonasal secretory carcinoma of salivary gland with high grade transformation: a case report of this under-recognized diagnostic entity with prognostic and therapeutic implications. Head Neck Pathol. 2018;12(2):274–8. https://doi.org/10.1007/s12105-017-0855-5.

    Article  PubMed  Google Scholar 

  71. Zhang MY, Churpek JE, Keel SB, Walsh T, Lee MK, Loeb KR, et al. Germline ETV6 mutations in familial thrombocytopenia and hematologic malignancy. Nat Genet. 2015;47(2):180–5. https://doi.org/10.1038/ng.3177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Werner P, Paluru P, Simpson AM, Latney B, Iyer R, Brodeur GM, et al. Mutations in NTRK3 suggest a novel signaling pathway in human congenital heart disease. Hum Mutat. 2014;35(12):1459–68. https://doi.org/10.1002/humu.22688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bubola J, MacMillan CM, Weinreb I, Witterick I, Swanson D, Zhang L, et al. A poorly differentiated non-keratinizing sinonasal squamous cell carcinoma with a novel ETV6-TNFRSF8 fusion gene. Head Neck Pathol. 2021;15(4):1284–8. https://doi.org/10.1007/s12105-020-01249-6.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Smith CA, Gruss HJ, Davis T, Anderson D, Farrah T, Baker E, et al. CD30 antigen, a marker for Hodgkin’s lymphoma, is a receptor whose ligand defines an emerging family of cytokines with homology to TNF. Cell. 1993;73(7):1349–60. https://doi.org/10.1016/0092-8674(93)90361-s.

    Article  CAS  PubMed  Google Scholar 

  75. Aizawa S, Nakano H, Ishida T, Horie R, Nagai M, Ito K, et al. Tumor necrosis factor receptor-associated factor (TRAF) 5 and TRAF2 are involved in CD30-mediated NFkappaB activation. J Biol Chem. 1997;272(4):2042–5. https://doi.org/10.1074/jbc.272.4.2042.

    Article  CAS  PubMed  Google Scholar 

  76. So T, Ishii N. The TNF-TNFR family of co-signal molecules. Adv Exp Med Biol. 2019;1189:53–84. https://doi.org/10.1007/978-981-32-9717-3_3.

    Article  CAS  PubMed  Google Scholar 

  77. Bell D, Phan J, DeMonte F, Hanna EY. High-grade transformation of low-grade biphenotypic sinonasal sarcoma: radiological, morphophenotypic variation and confirmatory molecular analysis. Ann Diagn Pathol. 2022;57:151889. https://doi.org/10.1016/j.anndiagpath.2021.151889.

    Article  PubMed  Google Scholar 

  78. Gross J, Fritchie K. Soft tissue special issue: biphenotypic sinonasal sarcoma: a review with emphasis on differential diagnosis. Head Neck Pathol. 2020;14(1):33–42. https://doi.org/10.1007/s12105-019-01092-4.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Zhang H, Chen H, Luo H, An J, Sun L, Mei L, et al. Functional analysis of Waardenburg syndrome-associated PAX3 and SOX10 mutations: report of a dominant-negative SOX10 mutation in Waardenburg syndrome type II. Hum Genet. 2012;131(3):491–503. https://doi.org/10.1007/s00439-011-1098-2.

    Article  CAS  PubMed  Google Scholar 

  80. Wang Q, Fang WH, Krupinski J, Kumar S, Slevin M, Kumar P. Pax genes in embryogenesis and oncogenesis. J Cell Mol Med. 2008;12(6a):2281–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wu L, Sun T, Kobayashi K, Gao P, Griffin JD. Identification of a family of mastermind-like transcriptional coactivators for mammalian notch receptors. Mol Cell Biol. 2002;22(21):7688–700. https://doi.org/10.1128/mcb.22.21.7688-7700.2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Mechtersheimer G, Andrulis M, Delank KW, Volckmar AL, Zhang L, von Winterfeld M, et al. RREB1-MKL2 fusion in a spindle cell sinonasal sarcoma: biphenotypic sinonasal sarcoma or ectomesenchymal chondromyxoid tumor in an unusual site? Genes Chromosomes Cancer. 2021;60(8):565–70. https://doi.org/10.1002/gcc.22948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Siegfried A, Romary C, Escudié F, Nicaise Y, Grand D, Rochaix P, et al. RREB1-MKL2 fusion in biphenotypic “oropharyngeal” sarcoma: new entity or part of the spectrum of biphenotypic sinonasal sarcomas? Genes Chromosomes Cancer. 2018;57(4):203–10. https://doi.org/10.1002/gcc.22521.

    Article  CAS  PubMed  Google Scholar 

  84. Andreasen S, Bishop JA, Hellquist H, Hunt J, Kiss K, Rinaldo A, et al. Biphenotypic sinonasal sarcoma: demographics, clinicopathological characteristics, molecular features, and prognosis of a recently described entity. Virchows Arch. 2018;473(5):615–26. https://doi.org/10.1007/s00428-018-2426-x.

    Article  PubMed  Google Scholar 

  85. Rooper LM, Huang S-C, Antonescu CR, Westra WH, Bishop JA. Biphenotypic sinonasal sarcoma: an expanded immunoprofile including consistent nuclear β-catenin positivity and absence of SOX10 expression. Hum Pathol. 2016;55:44–50. https://doi.org/10.1016/j.humpath.2016.04.009.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Huang SC, Ghossein RA, Bishop JA, Zhang L, Chen TC, Huang HY, et al. Novel PAX3-NCOA1 fusions in biphenotypic sinonasal sarcoma with focal rhabdomyoblastic differentiation. Am J Surg Pathol. 2016;40(1):51–9. https://doi.org/10.1097/pas.0000000000000492.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Le Loarer F, Laffont S, Lesluyes T, Tirode F, Antonescu C, Baglin AC, et al. Clinicopathologic and molecular features of a series of 41 biphenotypic sinonasal sarcomas expanding their molecular spectrum. Am J Surg Pathol. 2019;43(6):747–54. https://doi.org/10.1097/pas.0000000000001238.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Pasquini G, Giaccone G. C-MET inhibitors for advanced non-small cell lung cancer. Expert Opin Investig Drugs. 2018;27(4):363–75. https://doi.org/10.1080/13543784.2018.1462336.

    Article  CAS  PubMed  Google Scholar 

  89. Zhao S, Wu W, Jiang H, Ma L, Pan C, Jin C, et al. Selective inhibitor of the c-Met receptor tyrosine kinase in advanced hepatocellular carcinoma: no beneficial effect with the use of tivantinib? Front Immunol. 2021;12:731527. https://doi.org/10.3389/fimmu.2021.731527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Castelnuovo P, Turri-Zanoni M. Adenoid cystic carcinoma. Adv Otorhinolaryngol. 2020;84:197–209. https://doi.org/10.1159/000457939.

    Article  PubMed  Google Scholar 

  91. Cantù G. Adenoid cystic carcinoma. An indolent but aggressive tumour. Part A: from aetiopathogenesis to diagnosis. Acta Otorhinolaryngol Ital. 2021;41(3):206–14. https://doi.org/10.14639/0392-100x-n1379.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Brill LB 2nd, Kanner WA, Fehr A, Andrén Y, Moskaluk CA, Löning T, et al. Analysis of MYB expression and MYB-NFIB gene fusions in adenoid cystic carcinoma and other salivary neoplasms. Mod Pathol. 2011;24(9):1169–76. https://doi.org/10.1038/modpathol.2011.86.

    Article  CAS  PubMed  Google Scholar 

  93. Schanze I, Bunt J, Lim JWC, Schanze D, Dean RJ, Alders M, et al. NFIB haploinsufficiency is associated with intellectual disability and macrocephaly. Am J Hum Genet. 2018;103(5):752–68. https://doi.org/10.1016/j.ajhg.2018.10.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Azumi N, Battifora H. The cellular composition of adenoid cystic carcinoma An immunohistochemical study. Cancer. 1987;60(7):1589–98. https://doi.org/10.1002/1097-0142(19871001)60:7%3c1589::aid-cncr2820600729%3e3.0.co;2-u.

    Article  CAS  PubMed  Google Scholar 

  95. Szanto PA, Luna MA, Tortoledo ME, White RA. Histologic grading of adenoid cystic carcinoma of the salivary glands. Cancer. 1984;54(6):1062–9. https://doi.org/10.1002/1097-0142(19840915)54:6%3c1062::aid-cncr2820540622%3e3.0.co;2-e.

    Article  CAS  PubMed  Google Scholar 

  96. Pham T, Pereira L, Roth S, Galletta L, Link E, Akhurst T, et al. First-in-human phase I clinical trial of a combined immune modulatory approach using TetMYB vaccine and Anti-PD-1 antibody in patients with advanced solid cancer including colorectal or adenoid cystic carcinoma: the MYPHISMO study protocol (NCT03287427). Contemp Clin Trials Commun. 2019;16:100409. https://doi.org/10.1016/j.conctc.2019.100409.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Davanzo B, Emerson RE, Lisy M, Koniaris LG, Kays JK. Solitary fibrous tumor. Transl. Gastroenterol Hepatol. 2018;3:94. https://doi.org/10.21037/tgh.2018.11.02.

    Article  Google Scholar 

  98. Thompson LDR, Lau SK. Sinonasal tract solitary fibrous tumor: a clinicopathologic study of six cases with a comprehensive review of the literature. Head Neck Pathol. 2018;12(4):471–80. https://doi.org/10.1007/s12105-017-0878-y.

    Article  PubMed  Google Scholar 

  99. Consortium TU. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 2020;49(D1):D480–9. https://doi.org/10.1093/nar/gkaa1100.

    Article  CAS  Google Scholar 

  100. Lu X, Chen J, Sasmono RT, Hsi ED, Sarosiek KA, Tiganis T, et al. T-cell protein tyrosine phosphatase, distinctively expressed in activated-B-cell-like diffuse large B-cell lymphomas, is the nuclear phosphatase of STAT6. Mol Cell Biol. 2007;27(6):2166–79. https://doi.org/10.1128/mcb.01234-06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Park YS, Kim HS, Kim JH, Choi SH, Kim DS, Ryoo ZY, et al. NAB2-STAT6 fusion protein mediates cell proliferation and oncogenic progression via EGR-1 regulation. Biochem Biophys Res Commun. 2020;526(2):287–92. https://doi.org/10.1016/j.bbrc.2020.03.090.

    Article  CAS  PubMed  Google Scholar 

  102. Stevens TM, Rooper LM, Bacchi CE, Fernandes IL, Antonescu CR, Gagan J, et al. Teratocarcinosarcoma-like and adamantinoma-like head and neck neoplasms harboring NAB2::STAT6: unusual variants of solitary fibrous tumor or novel tumor entities? Head Neck Pathol. 2022. https://doi.org/10.1007/s12105-022-01444-7.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Baněčková M, Michal M, Hájkova V, Haller F, Mosaieby E, Salajka P, et al. Misleading morphologic and phenotypic features (transdifferentiation) in solitary fibrous tumor of the head and neck: report of 3 cases and review of the literature. Am J Surg Pathol. 2022. https://doi.org/10.1097/pas.0000000000001875.

    Article  PubMed  Google Scholar 

  104. Xu WW, Li B, Zhao JF, Yang JG, Li JQ, Tsao SW, et al. IGF2 induces CD133 expression in esophageal cancer cells to promote cancer stemness. Cancer Lett. 2018;425:88–100. https://doi.org/10.1016/j.canlet.2018.03.039.

    Article  CAS  PubMed  Google Scholar 

  105. Miller DL, Palsgrove DN, Rijal A, Hathuc V, Chernock R, Gagan J, et al. Unclassified neuroendocrine tumor with a novel CHD4::AFF2 fusion: expanding the family of AFF2-rearranged head and neck malignancies. Head Neck Pathol. 2022. https://doi.org/10.1007/s12105-022-01432-x.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Soon GST, Chang KTE, Kuick CH, Petersson F. A case of nasal low-grade non-intestinal-type adenocarcinoma with aberrant CDX2 expression and a novel SYN2-PPARG gene fusion in a 13-year-old girl. Virchows Arch. 2019;474(5):619–23. https://doi.org/10.1007/s00428-019-02524-w.

    Article  PubMed  Google Scholar 

  107. Lan J, Huang SC, Chen YH, Chen WC, Jin YT, Lu YC, et al. Primary paranasal sinus clear cell carcinoma with EWSR1-ATF1 fusion: report of 2 molecularly confirmed cases exhibiting unique histopathology. Hum Pathol. 2017;63:139–43. https://doi.org/10.1016/j.humpath.2016.09.036.

    Article  CAS  PubMed  Google Scholar 

  108. AlAli BM, Alyousef MJ, Kamel AS, Al Hamad MA, Al-Bar MH, Algowiez RM. Primary paranasal sinus hyalinizing clear cell carcinoma: a case report. Diagn Pathol. 2017;12(1):70. https://doi.org/10.1186/s13000-017-0659-7.

    Article  PubMed  PubMed Central  Google Scholar 

  109. López F, Costales M, Vivanco B, Fresno MF, Suárez C, Llorente JL. Sinonasal desmoplastic small round cell tumor. Auris Nasus Larynx. 2013;40(6):573–6. https://doi.org/10.1016/j.anl.2012.12.006.

    Article  PubMed  Google Scholar 

  110. Yoshida A, Arai Y, Hama N, Chikuta H, Bando Y, Nakano S, et al. Expanding the clinicopathologic and molecular spectrum of BCOR-associated sarcomas in adults. Histopathology. 2020;76(4):509–20. https://doi.org/10.1111/his.14023.

    Article  PubMed  Google Scholar 

  111. McGregor SM, Alikhan MB, John RA, Kotler H, Bridge JA, Mujacic I, et al. Melanotic PEComa of the sinonasal mucosa with NONO-TFE3 fusion: an elusive mimic of sinonasal melanoma. Am J Surg Pathol. 2017;41(5):717–22. https://doi.org/10.1097/pas.0000000000000778.

    Article  PubMed  Google Scholar 

Download references

Funding

This research was supported (in part) by the Intramural Research Program of the NIH, NCI. This research was made possible through the NIH Medical Research Scholars Program, a public–private partnership supported jointly by the NIH and contributions to the NIH from the Doris Duke Charitable Foundation (DDCF Grant #2014194), the American Association for Dental Research, the Colgate-Palmolive Company, Genentech, Elsevier, and other private donors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nyall R. London Jr..

Ethics declarations

Conflict of Interest

N. London receives research funding from Merck Sharp & Dohme, LLC regarding HPV-related sinonasal carcinomas and holds stock in Navigen Pharmaceuticals, none of which are relevant to the present manuscript. All other authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical collection on Head and Neck Cancers

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larkin, R., Hermsen, M.A. & London Jr., N.R. Translocations and Gene Fusions in Sinonasal Malignancies. Curr Oncol Rep 25, 269–278 (2023). https://doi.org/10.1007/s11912-023-01364-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-023-01364-x

Keywords

Navigation