Skip to main content

Molecular Pathology of Sinonasal Tumors

  • Chapter
  • First Online:
Pathology of Sinonasal Tumors and Tumor-Like Lesions

Abstract

Recent years have seen a growing number of publications on genetic aberrations in sinonasal cancer. On the one hand, due to the fact that these are rare tumors, the available data are not always conclusive, and of some types there are hardly any data. On the other hand, more and more sinonasal tumor types are becoming classified on the basis of characterizing genetic features, for example, chromosomal translocation t(15;19) NUT-BRD4 in NUT carcinoma, gene copy number deletion in SMARCB1 (INI1)-deficient carcinoma, or viral infection in HPV-related adenoid cystic-like carcinoma. In addition, highly frequent gene mutations specific to one tumor type have been reported, such as EGFR exon 20 mutations in squamous cell carcinoma associated with inverted papilloma and IDH2 mutations in undifferentiated carcinoma. This chapter will present an overview of genetic changes reported in epithelial, neuroendocrine, and mesenchymal sinonasal cancer, more or less ordered according to the number of available genetic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. El-Naggar AK, et al. WHO classification of tumors pathology and genetics of head and neck tumors. 4th ed. Lyon: IARC Press; 2017.

    Google Scholar 

  2. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70.

    Article  CAS  PubMed  Google Scholar 

  3. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    Article  CAS  PubMed  Google Scholar 

  4. Llorente JL, López F, Suárez C, Hermsen M. Sinonasal carcinoma: clinical, pathological and genetic advances for new therapeutic opportunities. Nat Rev Clin Oncol. 2014;11(8):460–72.

    Article  PubMed  Google Scholar 

  5. López F, Llorente JL, García-Inclán C, Alonso-Guervós M, Cuesta-Albalad MP, Fresno MF, Alvarez-Marcos C, Suárez C, Hermsen MA. Genomic profiling of sinonasal squamous cell carcinoma. Head Neck. 2011;33(2):145–53.

    Article  PubMed  Google Scholar 

  6. García-Inclán C, López-Hernández A, Alonso-Guervós M, Allonca E, Potes S, López F, Llorente JL, Hermsen M. Establishment and genetic characterization of six unique tumor cell lines as preclinical models for sinonasal squamous cell carcinoma. Sci Rep. 2014;4:4925.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. López F, Llorente JL, Martín Oviedo C, Vivanco B, Álvarez Marcos C, García-Inclán C, Scola B, Hermsen MA. Gene amplification and protein overexpression of EGFR and ERBB2 in sinonasal squamous cell carcinoma. Cancer. 2012;118(7):1818–26.

    Article  PubMed  CAS  Google Scholar 

  8. Schröck A, Göke F, Wagner P, et al. Fibroblast growth factor receptor-1 as a potential therapeutic target in sinonasal cancer. Head Neck. 2014;36(9):1253–7.

    PubMed  Google Scholar 

  9. Schröck A, Göke F, Wagner P, Bode M, Franzen A, Braun M, Huss S, Agaimy A, Ihrler S, Menon R, Kirsten R, Kristiansen G, Bootz F, Lengerke C, Perner S. Sex determining region Y-Box 2 (SOX2) amplification is an independent indicator of disease recurrence in sinonasal cancer. PLoS One. 2013;8(3):e59201.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Holmila R, Bornholdt J, Heikkilä P, Suitiala T, Févotte J, Cyr D, Hansen J, Snellman SM, Dictor M, Steiniche T, Schlünssen V, Schneider T, Pukkala E, Savolainen K, Wolff H, Wallin H, Luce D, Husgafvel-Pursiainen K. Mutations in TP53 tumor suppressor gene in wood dust-related sinonasal cancer. Int J Cancer. 2010;127(3):578–88.

    Article  CAS  PubMed  Google Scholar 

  11. López F, García Inclán C, Pérez-Escuredo J, Alvarez Marcos C, Scola B, Suárez C, Llorente JL, Hermsen MA. KRAS and BRAF mutations in sinonasal cancer. Oral Oncol. 2012;48(8):692–7.

    Article  PubMed  CAS  Google Scholar 

  12. Bornholdt J, Hansen J, Steiniche T, Dictor M, Antonsen A, Wolff H, Schlünssen V, Holmila R, Luce D, Vogel U, Husgafvel-Pursiainen K, Wallin H. K-ras mutations in sinonasal cancers in relation to wood dust exposure. BMC Cancer. 2008;8:53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Udager AM, McHugh JB, Betz BL, Montone KT, Livolsi VA, Seethala RR, Yakirevich E, Iwenofu OH, Perez-Ordonez B, DuRoss KE, Weigelin HC, Lim MS, Elenitoba-Johnson KS, Brown NA. Activating KRAS mutations are characteristic of oncocytic sinonasal papilloma and associated sinonasal squamous cell carcinoma. J Pathol. 2016;239(4):394–8.

    Article  CAS  PubMed  Google Scholar 

  14. Udager AM, Rolland DCM, McHugh JB, Betz BL, Murga-Zamalloa C, Carey TE, Marentette LJ, Hermsen MA, DuRoss KE, Lim MS, Elenitoba-Johnson KSJ, Brown NA. High frequency targetable EGFR mutations in inverted sinonasal papilloma and associated sinonasal squamous cell carcinoma. Cancer Res. 2015;75(13):2600–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Udager AM, McHugh JB, Goudsmit CM, Weigelin HC, Lim MS, Elenitoba-Johnson KSJ, Betz BL, Carey TE, Brown NA. Human papillomavirus (HPV) and somatic EGFR mutations are essential, mutually exclusive oncogenic mechanisms for inverted sinonasal papillomas and associated sinonasal squamous cell carcinomas. Ann Oncol. 2018;29(2):466–71.

    Article  CAS  PubMed  Google Scholar 

  16. Sahnane N, Ottini G, Turri-Zanoni M, Furlan D, Battaglia P, Karligkiotis A, Albeni C, Cerutti R, Mura E, Chiaravalli AM, Castelnuovo P, Sessa F, Facco C. Comprehensive analysis of HPV infection, EGFR exon 20 mutations and LINE1 hypomethylation as risk factors for malignant transformation of sinonasal-inverted papilloma to squamous cell carcinoma. Int J Cancer. 2019;144(6):1313–20.

    Article  CAS  PubMed  Google Scholar 

  17. Sasaki E, Nishikawa D, Hanai N, Hasegawa Y, Yatabe Y. Sinonasal squamous cell carcinoma and EGFR mutations: a molecular footprint of a benign lesion. Histopathology. 2018;73(6):953–62.

    Article  PubMed  Google Scholar 

  18. Stransky N, Egloff AM, Tward AD, Kostic AD, Cibulskis K, Sivachenko A, Kryukov GV, Lawrence MS, Sougnez C, McKenna A, Shefler E, Ramos AH, Stojanov P, Carter SL, Voet D, Cortés ML, Auclair D, Berger MF, Saksena G, Guiducci C, Onofrio RC, Parkin M, Romkes M, Weissfeld JL, Seethala RR, Wang L, Rangel-Escareño C, Fernandez-Lopez JC, Hidalgo-Miranda A, Melendez-Zajgla J, Winckler W, Ardlie K, Gabriel SB, Meyerson M, Lander ES, Getz G, Golub TR, Garraway LA, Grandis JR. The mutational landscape of head and neck squamous cell carcinoma. Science. 2011;333(6046):1157–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Martínez JG, Pérez-Escuredo J, López F, Suárez C, Alvarez-Marcos C, Llorente JL, Hermsen MA. Microsatellite instability analysis of sinonasal carcinomas. Otolaryngol Head Neck Surg. 2009;140(1):55–60.

    Article  PubMed  Google Scholar 

  20. Uryu H, Oda Y, Shiratsuchi H, et al. Microsatellite instability and proliferating activity in sinonasal carcinoma: molecular genetic and immunohistochemical comparison with oral squamous cell carcinoma. Oncol Rep. 2005;14:1133–42.

    CAS  PubMed  Google Scholar 

  21. Costales M, López-Hernández A, García-Inclán C, Vivanco B, López F, Llorente JL, Hermsen MA. Gene methylation profiling in sinonasal adenocarcinoma and squamous cell carcinoma. Otolaryngol Head Neck Surg. 2016;155(5):808–15.

    Article  PubMed  Google Scholar 

  22. Syrjänen K, Syrjänen S. Detection of human papillomavirus in sinonasal papillomas: systematic review and meta-analysis. Laryngoscope. 2013;123(1):181–92.

    Article  PubMed  Google Scholar 

  23. Bishop JA, Guo TW, Smith DF, Wang H, Ogawa T, Pai SI, Westra WH. Human papillomavirus-related carcinomas of the sinonasal tract. Am J Surg Pathol. 2013;37(2):185–92.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gray ST. Treatment outcomes and prognostic factors, including human papillomavirus, for sinonasal undifferentiated carcinoma: a retrospective review. Head Neck. 2015;37:366–74.

    Article  PubMed  Google Scholar 

  25. El-Mofty SK, Lu DW. Prevalence of high-risk human papillomavirus DNA in nonkeratinizing (cylindrical cell) carcinoma of the sinonasal tract: a distinct clinicopathologic and molecular disease entity. Am J Surg Pathol. 2005;29:1367–72.

    Article  PubMed  Google Scholar 

  26. Alos L, Moyano S, Nadal A, Alobid I, Blanch JL, Ayala E, Lloveras B, Quint W, Cardesa A, Ordi J. Human papillomaviruses are identified in a subgroup of sinonasal squamous cell carcinomas with favorable outcome. Cancer. 2009;115:2701–9.

    Article  PubMed  Google Scholar 

  27. Larque AB, Hakim S, Ordi J, Nadal A, Diaz A, del Pino M, Marimon L, Alobid I, Cardesa A, Alos L. High-risk human papillomavirus is transcriptionally active in a subset of sinonasal squamous cell carcinomas. Mod Pathol. 2014;27(3):343–51.

    Article  CAS  PubMed  Google Scholar 

  28. Laco J, Sieglová K, Vošmiková H, Dundr P, Němejcová K, Michálek J, Čelakovský P, Chrobok V, Mottl R, Mottlová A, Tuček L, Slezák R, Chmelařová M, Sirák I, Vošmik M, Ryška A. The presence of high-risk human papillomavirus (HPV) E6/E7 mRNA transcripts in a subset of sinonasal carcinomas is evidence of involvement of HPV in its etiopathogenesis. Virchows Arch. 2015;467:405–15.

    Article  CAS  PubMed  Google Scholar 

  29. Ariza M, Llorente JL, Alvarez-Marcas C, Baragaño L, Salas A, Rodriguez Prado N, Hermsen M, Suárez C, Sampedro A. Comparative genomic hybridization of primary sinonasal adenocarcinomas. Cancer. 2004;100(2):335–41.

    Article  CAS  PubMed  Google Scholar 

  30. Korinth D, Pacyna-Gengelbach M, Deutschmann N, Hattenberger S, Bockmühl U, Dietel M, Schroeder HG, Donhuijsen K, Petersen I. Chromosomal imbalances in wood dust-related adenocarcinomas of the inner nose and their associations with pathological parameters. J Pathol. 2005;207(2):207–15.

    Article  CAS  PubMed  Google Scholar 

  31. Hermsen MA, Llorente JL, Pérez-Escuredo J, López F, Ylstra B, Alvarez-Marcos C, Suárez C. Genome-wide analysis of genetic changes in intestinal-type sinonasal adenocarcinoma. Head Neck. 2009;31(3):290–7.

    Article  PubMed  Google Scholar 

  32. Pérez-Escuredo J, López-Hernández A, Costales M, López F, Potes Ares S, Vivanco B, Llorente JL, Hermsen MA. Recurrent DNA copy number alterations in intestinal-type sinonasal adenocarcinoma. Rhinology. 2016;54(3):278–86.

    Article  PubMed  Google Scholar 

  33. López-Hernández A, Pérez-Escuredo J, Vivanco B, García-Inclán C, Potes-Ares S, Cabal VN, Riobello C, Costales M, López F, Llorente JL, Hermsen MA. Genomic profiling of intestinal-type sinonasal adenocarcinoma reveals subgroups of patients with distinct clinical outcomes. Head Neck. 2018;40(2):259–73.

    Article  PubMed  Google Scholar 

  34. Franchi A, Fondi C, Paglierani M, Pepi M, Gallo O, Santucci M. Epidermal growth factor receptor expression and gene copy number in sinonasal intestinal type adenocarcinoma. Oral Oncol. 2009;45:835–8.

    Article  CAS  PubMed  Google Scholar 

  35. Franchi A, Innocenti DR, Palomba A, et al. Low prevalence of K-RAS, EGFR and BRAF mutations in sinonasal adenocarcinomas. Implications for anti-EGFR treatments. Pathol Oncol Res. 2014;20:571–9.

    Article  CAS  PubMed  Google Scholar 

  36. Projetti F, Mesturoux L, Coulibaly B, et al. Study of MET protein levels and MET gene copy number in 72 sinonasal intestinal-type adenocarcinomas. Head Neck. 2015;37(11):1563–8.

    Article  PubMed  Google Scholar 

  37. Pacheco E, Llorente JL, López-Hernández A, et al. Absence of chromosomal translocations and protein expression of ALK in sinonasal adenocarcinomas. Acta Otorrinolaringol Esp. 2017;68(1):9–14.

    Article  PubMed  Google Scholar 

  38. Franchi A, Palomba A, Fondi C, et al. Immunohistochemical investigation of tumorigenic pathways in sinonasal intestinal-type adenocarcinoma. A tissue microarray analysis of 62 cases. Histopathology. 2011;59:98–105.

    Article  PubMed  Google Scholar 

  39. Perrone F, Oggionni M, Birindelli S, et al. TP53, p14ARF, p16INK4a and H-ras gene molecular analysis in intestinal-type adenocarcinoma of the nasal cavity and paranasal sinuses. Int J Cancer. 2003;105:196–203.

    Article  CAS  PubMed  Google Scholar 

  40. Yom SS, Rashid A, Rosenthal DI, et al. Genetic analysis of sinonasal adenocarcinoma phenotypes: distinct alterations of histogenetic significance. Mod Pathol. 2005;18(3):315–9.

    Article  CAS  PubMed  Google Scholar 

  41. Pérez-Escuredo J, Martínez JG, Vivanco B, et al. Wood dust-related mutational profile of TP53 in intestinal-type sinonasal adenocarcinoma. Hum Pathol. 2012;43:1894–901.

    Article  PubMed  CAS  Google Scholar 

  42. Bossi P, Perrone F, Miceli R, et al. TP53 status as guide for the management of ethmoid sinus intestinal-type adenocarcinoma. Oral Oncol. 2013;49:413–9.

    Article  CAS  PubMed  Google Scholar 

  43. Pérez-Escuredo J, García Martínez J, García-Inclán C, Vivanco B, Costales M, Álvarez Marcos C, Llorente JL, Hermsen MA. Establishment and genetic characterization of an immortal tumor cell line derived from intestinal-type sinonasal adenocarcinoma. Cell Oncol (Dordr). 2011;34(1):23–31.

    Article  CAS  Google Scholar 

  44. Perez-Ordonez B, Huynh NN, Berean KW, Jordan RC. Expression of mismatch repair proteins, β-catenin, and cadherin in intestinal-type sinonasal adenocarcinoma. J Clin Pathol. 2004;57(10):1080–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Díaz-Molina JP, Llorente JL, Vivanco B, Martínez-Camblor P, Fresno MF, Pérez-Escuredo J, Álvarez-Marcos C, Hermsen MA. Wnt-pathway activation in intestinal-type sinonasal adenocarcinoma. Rhinology. 2011;49(5):593–9.

    PubMed  Google Scholar 

  46. Frattini M, Perrone F, Suardi S, Balestra D, Caramuta S, Colombo F, Licitra L, Cantù G, Pierotti MA, Pilotti S. Phenotype-genotype correlation: challenge of intestinal-type adenocarcinoma of the nasal cavity and paranasal sinuses. Head Neck. 2006;28(10):909–15.

    Article  PubMed  Google Scholar 

  47. García-Inclán C, López F, Pérez-Escuredo J, Cuesta-Albalad MP, Vivanco B, Centeno I, Balbín M, Suárez C, Llorente JL, Hermsen MA. EGFR status and KRAS/BRAF mutations in intestinal-type sinonasal adenocarcinomas. Cell Oncol (Dordr). 2012;35(6):443–50.

    Article  CAS  Google Scholar 

  48. Projetti F, Durand K, Chaunavel A, et al. Epidermal growth factor receptor expression and KRAS and BRAF mutations: study of 39 sinonasal intestinal-type adenocarcinomas. Hum Pathol. 2013;44:2116–25.

    Article  CAS  PubMed  Google Scholar 

  49. López-Hernández A, Vivanco B, Franchi A, Bloemena E, Cabal VN, Potes-Ares S, Riobello C, García-Inclán C, López F, Llorente JL, Hermsen M. Genetic profiling of poorly differentiated sinonasal tumors. Sci Rep. 2018;8(1):3998.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Jo VY, Chau NG, Hornick JL, Krane JF, Sholl LM. Recurrent IDH2 R172X mutations in sinonasal undifferentiated carcinoma. Mod Pathol. 2017;30(5):650–9.

    Article  CAS  PubMed  Google Scholar 

  51. Dogan S, Chute DJ, Xu B, Ptashkin RN, Chandramohan R, Casanova-Murphy J, Nafa K, Bishop JA, Chiosea SI, Stelow EB, Ganly I, Pfister DG, Katabi N, Ghossein RA, Berger MF. Frequent IDH2 R172 mutations in undifferentiated and poorly-differentiated sinonasal carcinomas. J Pathol. 2017;242(4):400–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Capper D, Engel NW, Stichel D, Lechner M, Glöss S, Schmid S, Koelsche C, Schrimpf D, Niesen J, Wefers AK, Jones DTW, Sill M, Weigert O, Ligon KL, Olar A, Koch A, Forster M, Moran S, Tirado OM, Sáinz-Jaspeado M, Mora J, Esteller M, Alonso J, Del Muro XG, Paulus W, Felsberg J, Reifenberger G, Glatzel M, Frank S, Monoranu CM, Lund VJ, von Deimling A, Pfister S, Buslei R, Ribbat-Idel J, Perner S, Gudziol V, Meinhardt M, Schüller U. DNA methylation-based reclassification of olfactory neuroblastoma. Acta Neuropathol. 2018;136(2):255–71.

    Article  CAS  PubMed  Google Scholar 

  53. Takahashi Y, Kupferman ME, Bell D, Jiffar T, Lee JG, Xie TX, Li NW, Zhao M, Frederick MJ, Gelbard A, Myers JN, Hanna EY. Establishment and characterization of novel cell lines from sinonasal undifferentiated carcinoma. Clin Cancer Res. 2012;18(22):6178–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gelbard A, Hale KS, Takahashi Y, Davies M, Kupferman ME, El-Naggar AK, Myers JN, Hanna EY. Molecular profiling of sinonasal undifferentiated carcinoma. Head Neck. 2014;36(1):15–21.

    Article  PubMed  Google Scholar 

  55. Mito JK, Bishop JA, Sadow PM, Stelow EB, Faquin WC, Mills SE, Krane JF, French CA, Fletcher CDM, Hornick JL, Sholl LM, Jo VY. Immunohistochemical detection and molecular characterization of IDH-mutant sinonasal undifferentiated carcinomas. Am J Surg Pathol. 2018;42(8):1067–75.

    Article  PubMed  Google Scholar 

  56. Lu C, Ward PS, Kapoor GS, Rohle D, Turcan S, Abdel-Wahab O, Edwards CR, Khanin R, Figueroa ME, Melnick A, Wellen KE, O’Rourke DM, Berger SL, Chan TA, Levine RL, Mellinghoff IK, Thompson CB. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature. 2012;483(7390):474–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jackson EM, Sievert AJ, Gai X, Hakonarson H, Judkins AR, Tooke L, Perin JC, Xie H, Shaikh TH, Biegel JA. Genomic analysis using high-density single nucleotide polymorphism-based oligonucleotide arrays and multiplex ligation-dependent probe amplification provides a comprehensive analysis of INI1/SMARCB1 in malignant rhabdoid tumors. Clin Cancer Res. 2009;15(6):1923–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Agaimy A, Hartmann A, Antonescu CR, Chiosea SI, El-Mofty SK, Geddert H, Iro H, Lewis JS Jr, Märkl B, Mills SE, Riener MO, Robertson T, Sandison A, Semrau S, Simpson RH, Stelow E, Westra WH, Bishop JA. SMARCB1 (INI-1)-deficient sinonasal carcinoma: a series of 39 cases expanding the morphologic and clinicopathologic spectrum of a recently described entity. Am J Surg Pathol. 2017;41(4):458–71.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Kohashi K, Oda Y, Yamamoto H, et al. Reduced expression of SMARCB1/INI1 protein in synovial sarcoma. Mod Pathol. 2010;23:981–90.

    Article  CAS  PubMed  Google Scholar 

  60. French CA, Miyoshi I, Kubonishi I, Grier HE, Perez-Atayde AR, Fletcher JA. BRD4-NUT fusion oncogene: a novel mechanism in aggressive carcinoma. Cancer Res. 2003;63(2):304–7.

    CAS  PubMed  Google Scholar 

  61. French CA, Ramirez CL, Kolmakova J, Hickman TT, Cameron MJ, Thyne ME, Kutok JL, Toretsky JA, Tadavarthy AK, Kees UR, Fletcher JA, Aster JC. BRD-NUT oncoproteins: a family of closely related nuclear proteins that block epithelial differentiation and maintain the growth of carcinoma cells. Oncogene. 2008;27(15):2237–42.

    Article  CAS  PubMed  Google Scholar 

  62. French C. NUT midline carcinoma. Nat Rev Cancer. 2014;14:149–50.

    Article  CAS  PubMed  Google Scholar 

  63. Alekseyenko AA, Walsh EM, Zee BM, Pakozdi T, Hsi P, Lemieux ME, Dal Cin P, Ince TA, Kharchenko PV, Kuroda MI, French CA. Ectopic protein interactions within BRD4-chromatin complexes drive oncogenic megadomain formation in NUT midline carcinoma. Proc Natl Acad Sci U S A. 2017;114(21):E4184–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Shiota H, Elya JE, Alekseyenko AA, Chou PM, Gorman SA, Barbash O, Becht K, Danga K, Kuroda MI, Nardi V, French CA. ‘Z4’ complex member fusions in NUT carcinoma: Implications for a novel oncogenic mechanism. Mol Cancer Res. 2018;16(12):1826–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Schaefer IM, Dal Cin P, Landry LM, Fletcher CDM, Hanna GJ, French CA. CIC-NUTM1 fusion: a case which expands the spectrum of NUT-rearranged epithelioid malignancies. Genes Chromosomes Cancer. 2018;57(9):446–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. French CA. NUT Carcinoma: clinicopathologic features, pathogenesis, and treatment. Pathol Int. 2018;68(11):583–95.

    Article  CAS  PubMed  Google Scholar 

  67. Lee JK, Louzada S, An Y, et al. Complex chromosomal rearrangements by single catastrophic pathogenesis in NUT midline carcinoma. Ann Oncol. 2017;28:890–7.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Shah AA, Lamarre ED, Bishop JA. Human papillomavirus-related multiphenotypic sinonasal carcinoma: a case report documenting the potential for very late tumor recurrence. Head Neck Pathol. 2018;12:623–8.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Adamane SA, Mittal N, Teni T, Pawar S, Waghole R, Bal M. Human papillomavirus-related multiphenotypic sinonasal carcinoma with unique HPV type 52 association: a case report with review of literature. Head Neck Pathol. 2019;13(3):331–8.

    Article  PubMed  Google Scholar 

  70. Bishop JA, Ogawa T, Stelow EB, Moskaluk CA, Koch WM, Pai SI, et al. Human papillomavirus-related carcinoma with adenoid cystic-like features: a peculiar variant of head and neck cancer restricted to the sinonasal tract. Am J Surg Pathol. 2013;37:836–44.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Bishop JA, Andreasen S, Hang JF, Bullock MJ, Chen TY, Franchi A, et al. HPV-related multiphenotypic sinonasal carcinoma: an expanded series of 49 cases of the tumor formerly known as HPV-related carcinoma with adenoid cystic carcinoma-like features. Am J Surg Pathol. 2017;41:1690–701.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Hang JF, Hsieh MS, Li WY, Chen JY, Lin SY, Liu SH, et al. Human papillomavirus-related carcinoma with adenoid cysticlike features: a series of five cases expanding the pathological spectrum. Histopathology. 2017;71(6):887–96.

    Article  PubMed  Google Scholar 

  73. Andreasen S, Skalova A, Agaimy A, Bishop JA, Laco J, Leivo I, et al. ETV6 gene rearrangements characterize a morphologically distinct subset of sinonasal low-grade non–intestinal-type adenocarcinoma: a novel translocation-associated carcinoma restricted to the sinonasal tract. Am J Surg Pathol. 2017;41:1552–60.

    Article  PubMed  Google Scholar 

  74. Andreasen S, Kiss K, Melchior LC, Laco J. The ETV6-RET gene fusion is found in ETV6-rearranged low-grade sinonasal adenocarcinoma without NTRK3 involvement. Am J Surg Pathol. 2018;42:985–8.

    Article  PubMed  Google Scholar 

  75. Skalova A, Vanecek T, Martinek P, Weinreb I, Stevens TM, Simpson RHW, et al. Molecular profiling of mammary analog secretory carcinoma revealed a subset of tumors harboring a novel ETV6-RET translocation: report of 10 cases. Am J Surg Pathol. 2018;42:234–46.

    Article  PubMed  Google Scholar 

  76. Baneckova M, Agaimy A, Andreasen S, Vanecek T, Steiner P, Slouka D, et al. Mammary analog secretory carcinoma of the nasal cavity. Am J Surg Pathol. 2018;42:735–43.

    Article  PubMed  Google Scholar 

  77. Soon GST, Chang KTE, Kuick CH, Petersson F. A case of nasal low-grade non-intestinal-type adenocarcinoma with aberrant CDX2 expression and a novel SYN2-PPARG gene fusion in a 13-year-old girl. Virchows Arch. 2019;474(5):619–23.

    Article  PubMed  Google Scholar 

  78. Villatoro TM, Mardekian SK. Two cases of sinonasal nonintestinal-type adenocarcinoma with squamoid morules expressing nuclear β-catenin and CDX2: a curious morphologic finding supported by molecular analysis. Case Rep Pathol. 2018;2018:8741017.

    PubMed  PubMed Central  Google Scholar 

  79. Vranic S, Caughron SK, Djuricic S, Bilalovic N, Zaman S, Suljevic I, Lydiatt WM, Emanuel J, Gatalica Z. Hamartomas, teratomas and teratocarcinosarcomas of the head and neck: Report of 3 new cases with clinico-pathologic correlation, cytogenetic analysis, and review of the literature. BMC Ear Nose Throat Disord. 2008;8:8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Thomas J, Adegboyega P, Iloabachie K, Mooring JW, Lian T. Sinonasal teratocarcinosarcoma with yolk sac elements: a neoplasm of somatic or germ cell origin? Ann Diagn Pathol. 2011;15(2):135–9.

    Article  PubMed  Google Scholar 

  81. Birkeland AC, Burgin SJ, Yanik M, Scott MV, Bradford CR, McHugh JB, McLean SA, Sullivan SE, Nor JE, McKean EL, Brenner JC. Pathogenetic analysis of sinonasal teratocarcinosarcomas reveal actionable β-catenin overexpression and a β-catenin mutation. J Neurol Surg B Skull Base. 2017;78(4):346–52.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Franchi A, Rocchetta D, Palomba A, Innocenti DRD, Castiglione F, Spinelli G. Primary combined neuroendocrine and squamous cell carcinoma of the maxillary sinus: report of a case with immunohistochemical and molecular characterization. Head Neck Pathol. 2015;9(1):107–13.

    Article  PubMed  Google Scholar 

  83. Bockmuhl U, You X, Pacyna-Gengelbach M, et al. CGH pattern of esthesioneuroblastoma and their metastases. Brain Pathol. 2004;14:158–63.

    Article  PubMed  Google Scholar 

  84. Lazo de la Vega L, McHugh JB, Cani AK, Kunder K, Walocko FM, Liu CJ, Hovelson DH, Robinson D, Chinnaiyan AM, Tomlins SA, Harms PW. Comprehensive molecular profiling of olfactory neuroblastoma identifies potentially targetable FGFR3 amplifications. Mol Cancer Res. 2017;15(11):1551–7.

    Article  CAS  PubMed  Google Scholar 

  85. Holland H, Koschny R, Krupp W, et al. Comprehensive cytogenetic characterization of an esthesioneuroblastoma. Cancer Genet Cytogenet. 2007;173:89–96.

    Article  CAS  PubMed  Google Scholar 

  86. Riazimand SH, Brieger J, Jacob R, et al. Analysis of cytogenetic aberrations in esthesioneuroblastomas by comparative genomic hybridization. Cancer Genet Cytogenet. 2002;136:53–7.

    Article  CAS  PubMed  Google Scholar 

  87. Guled M, Myllykangas S, Frierson HFJ, et al. Array comparative genomic hybridization analysis of olfactory neuroblastoma. Mod Pathol. 2008;21:770–8.

    Article  CAS  PubMed  Google Scholar 

  88. Valli R, De Bernardi F, Frattini A, Volpi L, Bignami M, Facchetti F, Pasquali F, Castelnuovo P, Maserati E. Comparative genomic hybridization on microarray (a-CGH) in olfactory neuroblastoma: analysis of ten cases and review of the literature. Genes Chromosomes Cancer. 2015;54(12):771–5.

    Article  CAS  PubMed  Google Scholar 

  89. Gay LM, Kim S, Fedorchak K, et al. Comprehensive genomic profiling of esthesioneuroblastoma reveals additional treatment options. Oncologist. 2017;22(7):834–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Weiss GJ, Liang WS, Izatt T, et al. Paired tumor and normal whole genome sequencing of metastatic olfactory neuroblastoma. PLoS One. 2012;7:e37029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Cha S, Lee J, Shin J-Y, Kim J-Y, Sim SH, Keam B, Kim TM, Kim D-W, Heo DS, Lee S-H, Kim J-I. Clinical application of genomic profiling to find druggable targets for adolescent and young adult (AYA) cancer patients with metastasis. BMC Cancer. 2016;16:170.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Wang L, Ding Y, Wei L, Zhao D, Wang R, Zhang Y, Gu X, Wang Z. Recurrent olfactory neuroblastoma treated with cetuximab and sunitinib: a case report. Medicine (Baltimore). 2016;95:e3536.

    Article  Google Scholar 

  93. Weiss SW, Goldblum JR. Enzinger and Weiss’s soft tissue tumors. 5th ed. Philadelphia: Mosby Elsevier; 2008.

    Google Scholar 

  94. Hayward NK, Wilmott JS, Waddell N, Johansson PA, Field MA, Nones K, Patch AM, Kakavand H, Alexandrov LB, Burke H, Jakrot V, Kazakoff S, Holmes O, Leonard C, Sabarinathan R, Mularoni L, Wood S, Xu Q, Waddell N, Tembe V, Pupo GM, De Paoli-Iseppi R, Vilain RE, Shang P, LMS L, Dagg RA, Schramm SJ, Pritchard A, Dutton-Regester K, Newell F, Fitzgerald A, Shang CA, Grimmond SM, Pickett HA, Yang JY, Stretch JR, Behren A, Kefford RF, Hersey P, Long GV, Cebon J, Shackleton M, Spillane AJ, RPM S, López-Bigas N, Pearson JV, Thompson JF, Scolyer RA, Mann GJ. Whole-genome landscapes of major melanoma subtypes. Nature. 2017;545(7653):175–80.

    Article  CAS  PubMed  Google Scholar 

  95. Van Dijk M, Sprenger S, Rombout P, Marres H, Kaanders J, Jeuken J, Ruiter D. Distinct chromosomal aberrations in sinonasal mucosal melanoma as detected by comparative genomic hybridization. Genes Chromosomes Cancer. 2003;36(2):151–8.

    Article  PubMed  CAS  Google Scholar 

  96. Zhou R, Shi C, Tao W, Li J, Wu J, Han Y, Yang G, Gu Z, Xu S, Wang Y, Wang L, Wang Y, Zhou G, Zhang C, Zhang Z, Sun S. Analysis of mucosal melanoma whole-genome landscapes reveals clinically relevant genomic aberrations. Clin Cancer Res. 2019;25(12):3548–60.

    Article  PubMed  Google Scholar 

  97. Curtin JA, Fridlyand J, Kageshita T, Patel HN, Busam KJ, Kutzner H, Cho KH, Aiba S, Bröcker EB, LeBoit PE, Pinkel D, Bastian BC. Distinct sets of genetic alterations in melanoma. N Engl J Med. 2005;353(20):2135–47.

    Article  CAS  PubMed  Google Scholar 

  98. Lyu J, Song Z, Chen J, Shepard MJ, Song H, Ren G, et al. Whole-exome sequencing of oral mucosal melanoma reveals mutational profile and therapeutic targets. J Pathol. 2018;244:358–66.

    Article  CAS  PubMed  Google Scholar 

  99. Zebary A, Jangard M, Omholt K, et al. KIT, NRAS and BRAF mutations in sinonasal mucosal melanoma: a study of 56 cases. Br J Cancer. 2013;109:559–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Amit M, Tam S, Abdelmeguid AS, Roberts DB, Takahashi Y, Raza SM, Su SY, Kupferman ME, DeMonte F, Hanna EY. Mutation status among patients with sinonasal mucosal melanoma and its impact on survival. Br J Cancer. 2017;116(12):1564–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Colombino M, Lissia A, Franco R, Botti G, Ascierto PA, Manca A, Sini MC, Pisano M, Paliogiannis P, Tanda F, Palmieri G, Cossu A. Unexpected distribution of cKIT and BRAF mutations among southern Italian patients with sinonasal melanoma. Dermatology. 2013;226(3):279–84.

    Article  CAS  PubMed  Google Scholar 

  102. Jangard M, Zebary A, Ragnarsson-Olding B, Hansson J. TERT promoter mutations in sinonasal malignant melanoma: a study of 49 cases. Melanoma Res. 2014;25:185–8.

    Article  CAS  Google Scholar 

  103. Turri-Zanoni M, Medicina D, Lombardi D, et al. Sinonasal mucosal melanoma: molecular profile and therapeutic implications from a series of 32 cases. Head Neck. 2013;35:1066–77.

    Article  PubMed  Google Scholar 

  104. Öztürk Sari Ş, Yilmaz İ, Taşkin OÇ, Narli G, Şen F, Çomoğlu Ş, Firat P, Bİlgİç B, Yilmazbayhan D, Özlük Y, Büyükbabanİ N. BRAF, NRAS, KIT, TERT, GNAQ/GNA11 mutation profile analysis of head and neck mucosal melanomas: a study of 42 cases. Pathology. 2017;49(1):55–61.

    Article  PubMed  CAS  Google Scholar 

  105. Wroblewska JP, Mull J, Wu CL, Fujimoto M, Ogawa T, Marszalek A, Hoang MP. SF3B1, NRAS, KIT, and BRAF Mutation; CD117 and cMYC Expression; and Tumoral pigmentation in sinonasal melanomas: an analysis with newly found molecular alterations and some population-based molecular differences. Am J Surg Pathol. 2019;43(2):168–77.

    Article  PubMed  Google Scholar 

  106. Maldonado-Mendoza J, Ramírez-Amador V, Anaya-Saavedra G, Ruíz-García E, Maldonado-Martínez H, Fernández Figueroa E, Meneses-García A. CD117 immunoexpression in oral and sinonasal mucosal melanoma does not correlate with somatic driver mutations in the MAPK pathway. J Oral Pathol Med. 2019;48(5):382–8.

    Article  CAS  PubMed  Google Scholar 

  107. Hintzsche JD, Gorden NT, Amato CM, Kim J, Wuensch KE, Robinson SE, et al. Whole-exome sequencing identifies recurrent SF3B1 R625 mutation and comutation of NF1 and KIT in mucosal melanoma. Melanoma Res. 2017;27:189–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Cosgarea I, Ugurel S, Sucker A, Livingstone E, Zimmer L, Ziemer M, Utikal J, Mohr P, Pfeiffer C, Pföhler C, Hillen U, Horn S, Schadendorf D, Griewank KG, Roesch A. Targeted next generation sequencing of mucosal melanomas identifies frequent NF1 and RAS mutations. Oncotarget. 2017;8(25):40683–92.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Lyu J, Wu Y, Li C, Wang R, Song H, Ren G, et al. Mutation scanning of BRAF, NRAS, KIT, and GNAQ/GNA11 in oral mucosal melanoma: a study of 57 cases. J Oral Pathol Med. 2016;45:295–301.

    Article  CAS  PubMed  Google Scholar 

  110. Kim HS, Jung M, Kang HN, Kim H, Park CW, Kim SM, Shin SJ, Kim SH, Kim SG, Kim EK, Yun MR, Zheng Z, Chung KY, Greenbowe J, Ali SM, Kim TM, Cho BC. Oncogenic BRAF fusions in mucosal melanomas activate the MAPK pathway and are sensitive to MEK/PI3K inhibition or MEK/CDK4/6 inhibition. Oncogene. 2017;36(23):3334–45.

    Article  CAS  PubMed  Google Scholar 

  111. D’Orazio JA. Inherited cancer syndromes in children and young adults. J Pediatr Hematol Oncol. 2010;32(3):195–228.

    Article  PubMed  Google Scholar 

  112. Sohier P, Luscan A, Lloyd A, Ashelford K, Laurendeau I, Briand-Suleau A, Vidaud D, Ortonne N, Pasmant E, Upadhyaya M. Confirmation of mutation landscape of NF1-associated malignant peripheral nerve sheath tumors. Genes Chromosomes Cancer. 2017;56(5):421–6.

    Article  CAS  PubMed  Google Scholar 

  113. Lee W, Teckie S, Wiesner T, et al. PRC2 is recurrently inactivated through EED or SUZ12 loss in malignant peripheral nerve sheath tumors. Nat Genet. 2014;46:1227–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Thway K, Fisher C. Malignant peripheral nerve sheath tumor: pathology and genetics. Ann Diagn Pathol. 2014;18(2):109–16.

    Article  PubMed  Google Scholar 

  115. Yu J, Deshmukh H, Payton JE, et al. Array-based comparative genomic hybridization identifies CDK4 and FOXM1 alterations as independent predictors of survival in malignant peripheral nerve sheath tumor. Clin Cancer Res. 2011;17:1924–34.

    Article  CAS  PubMed  Google Scholar 

  116. Hawkins DS, Gupta AA, Rudzinski ER. What is new in the biology and treatment of pediatric rhabdomyosarcoma? Curr Opin Pediatr. 2014;26(1):50–6.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Philpott C, Tovell H, Frayling IM, Cooper DN, Upadhyaya M. The NF1 somatic mutational landscape in sporadic human cancers. Hum Genomics. 2017;11(1):13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Abramowicz A, Gos M. Neurofibromin in neurofibromatosis type 1—mutations in NF1gene as a cause of disease. Dev Period Med. 2014;18(3):297–306.

    PubMed  Google Scholar 

  119. Le Guellec S, Soubeyran I, Rochaix P, Filleron T, Neuville A, Hostein I, Coindre JM. CTNNB1 mutation analysis is a useful tool for the diagnosis of desmoid tumors: a study of 260 desmoid tumors and 191 potential morphologic mimics. Mod Pathol. 2012;25(12):1551–8.

    Article  PubMed  CAS  Google Scholar 

  120. Penel N, Chibon F, Salas S. Adult desmoid tumors: biology, management and ongoing trials. Curr Opin Oncol. 2017;29(4):268–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Crago AM, Chmielecki J, Rosenberg M, et al. Near universal detection of alterations in CTNNB1 and wnt pathway regulators in desmoid-type fibromatosis by whole-exome sequencing and genomic analysis. Genes Chromosomes Cancer. 2015;54:606–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Lasota J, Felisiak-Golabek A, Aly FZ, Wang ZF, Thompson LD. MiettinenM. Nuclear expression and gain-of-function betacatenin mutation in glomangiopericytoma (sinonasal-type hemangiopericytoma): insight into pathogenesis and a diagnostic marker. Mod Pathol. 2015;28(5):715–20.

    Article  CAS  PubMed  Google Scholar 

  123. Haller F, Bieg M, Moskalev EA, et al. Recurrent mutations within the amino-terminal region of beta-catenin are probable key molecular driver events in sinonasal hemangiopericytoma. Am J Pathol. 2015;185:563–71.

    Article  CAS  PubMed  Google Scholar 

  124. Jo VY, Fletcher CDM. Nuclear β-catenin expression is frequent in sinonasal hemangiopericytoma and its mimics. Head Neck Pathol. 2017;11(2):119–23.

    Article  PubMed  Google Scholar 

  125. Rooper LM, Huang SC, Antonescu CR, et al. Biphenotypic sinonasal sarcoma: an expanded immunoprofile including consistent nuclear beta-catenin positivity and absence of SOX10 expression. Hum Pathol. 2016;55:44–50.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Kakkar A, Rajeshwari M, Sakthivel P, Sharma MC, Sharma SC. Biphenotypic sinonasal sarcoma: a series of six cases with evaluation of role of β-catenin immunohistochemistry in differential diagnosis. Ann Diagn Pathol. 2018;33:6–10.

    Article  PubMed  Google Scholar 

  127. Briski LM, Thomas DG, Patel RM, Lawlor ER, Chugh R, McHugh JB, Lucas DR. Canonical Wnt/β-catenin signaling activation in soft-tissue sarcomas: a comparative study of synovial sarcoma and leiomyosarcoma. Rare Tumors. 2018;10:2036361318813431.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Eguchi-Ishimae M, Tezuka M, Kokeguchi T, Nagai K, Moritani K, Yonezawa S, Tauchi H, Tokuda K, Ishida Y, Ishii E, Eguchi M. Early detection of the PAX3-FOXO1 fusion gene in circulating tumor-derived DNA in a case of alveolar rhabdomyosarcoma. Genes Chromosomes Cancer. 2019;58(8):521–9.

    Article  CAS  PubMed  Google Scholar 

  129. Thway K, Ng W, Noujaim J, Jones RL, Fisher C. The current status of solitary fibrous tumor: diagnostic features, variants, and genetics. Int J Surg Pathol. 2016;24(4):281–92.

    Article  CAS  PubMed  Google Scholar 

  130. Thompson LDR, Fanburg-Smith JC. Update on select benign mesenchymal and meningothelial sinonasal tract lesions. Head Neck Pathol. 2016;10(1):95–108.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Akaike K, Kurisaki-Arakawa A, Hara K, et al. Distinct clinicopathological features of NAB2-STAT6 fusion gene variants in solitary fibrous tumor with emphasis on the acquisition of highly malignant potential. Hum Pathol. 2015;46:347–56.

    Article  CAS  PubMed  Google Scholar 

  132. Dagrada GP, Spagnuolo RD, Mauro V, et al. Solitary fibrous tumors: loss of chimeric protein expression and genomic instability mark dedifferentiation. Mod Pathol. 2015;28:1074–83.

    Article  CAS  PubMed  Google Scholar 

  133. Mohajeri A, Tayebwa J, Collin A, et al. Comprehensive genetic analysis identifies a pathognomonic NAB2/STAT6 fusion gene, nonrandom secondary genomic imbalances, and a characteristic gene expression profile in solitary fibrous tumor. Genes Chromosomes Cancer. 2013;52:873–86.

    Article  CAS  PubMed  Google Scholar 

  134. El Beaino M, Araujo DM, Lazar AJ, Lin PP. Synovial sarcoma: advances in diagnosis and treatment identification of new biologic targets to improve multimodal therapy. Ann Surg Oncol. 2017;24(8):2145–54.

    Article  PubMed  Google Scholar 

  135. Clark J, Rocques PJ, Crew AJ, Gill S, Shipley J, Chan AM, Gusterson BA, Cooper CS. Identification of novel genes, SYT and SSX, involved in the t(X;18)(p11.2;q11.2) translocation found in human synovial sarcoma. Nat Genet. 1994;7(4):502–8.

    Article  CAS  PubMed  Google Scholar 

  136. Nielsen TO, Poulin NM, Ladanyi M. Synovial sarcoma: recent discoveries as a roadmap to new avenues for therapy. Cancer Discov. 2015;5(2):124–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Kadoch C, Crabtree GR. Reversible disruption of mSWI/SNF (BAF) complexes by the SS18-SSX oncogenic fusion in synovial sarcoma. Cell. 2013;153:71–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Saito T, Oda Y, Sakamoto A, Kawaguchi K, Tanaka K, Matsuda S, Tamiya S, Iwamoto Y, Tsuneyoshi M. APC mutations in synovial sarcoma. J Pathol. 2002;196(4):445–9.

    Article  CAS  PubMed  Google Scholar 

  139. Subramaniam MM, Calabuig-Fariñas S, Pellin A, Llombart-Bosch A. Mutational analysis of E-cadherin, β-catenin and APC genes in synovial sarcomas. Histopathology. 2010;57(3):482–6.

    Article  PubMed  Google Scholar 

  140. Ng TL, Gown AM, Barry TS, Cheang MC, Chan AK, Turbin DA, et al. Nuclear beta-catenin in mesenchymal tumors. Mod Pathol. 2005;18:68–74.

    Article  CAS  PubMed  Google Scholar 

  141. Barham W, Frump AL, Sherrill TP, Garcia CB, Saito-Diaz K, VanSaun MN, et al. Targeting the Wnt pathway in synovial sarcoma models. Cancer Discov. 2013;3:1286–301.

    Article  CAS  PubMed  Google Scholar 

  142. Trautmann M, Sievers E, Aretz S, Kindler D, Michels S, Friedrichs N, et al. SS18-SSX fusion protein-induced Wnt/beta-catenin signaling is a therapeutic target in synovial sarcoma. Oncogene. 2013;33:5006–16.

    Article  PubMed  CAS  Google Scholar 

  143. Le Loarer F, Laffont S, Lesluyes T, Tirode F, Antonescu C, Baglin AC, Delespaul L, Soubeyran I, Hostein I, Pérot G, Chibon F, Baud J, Le Guellec S, Karanian M, Costes-Martineau V, Castain C, Eimer S, Le Bail B, Wassef M, Coindre JM. Clinicopathologic and molecular features of a series of 41 biphenotypic sinonasal sarcomas expanding their molecular spectrum. Am J Surg Pathol. 2019;43(6):747–54.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Andreasen S, Bishop JA, Hellquist H, Hunt J, Kiss K, Rinaldo A, et al. Biphenotypic sinonasal sarcoma: demographics, clinicopathological characteristics, molecular features, and prognosis of a recently described entity. Virchows Arch. 2018;473(5):615–26.

    Article  PubMed  Google Scholar 

  145. Yasuda T, Perry KD, Nelson M, et al. Alveolar rhabdomyosarcoma of the head and neck region in older adults: genetic characterization and a review of the literature. Hum Pathol. 2009;40:341–8.

    Article  CAS  PubMed  Google Scholar 

  146. Mosquera JM, Sboner A, Zhang L, Kitabayashi N, Chen CL, Sung YS, Wexler LH, LaQuaglia MP, Edelman M, Sreekantaiah C, Rubin MA, Antonescu CR. Recurrent NCOA2 gene rearrangements in congenital/infantile spindle cell rhabdomyosarcoma. Genes Chromosomes Cancer. 2013;52:538–50.

    Article  CAS  PubMed  Google Scholar 

  147. Reichek JL, Duan F, Smith LM, et al. Genomic and clinical analysis of amplification of the 13q31 chromosomal region in alveolar rhabdomyosarcoma: a report from the Children’s Oncology Group. Clin Cancer Res. 2011;17:1463–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Van Gaal JC, Flucke UE, Roeffen MH, et al. Anaplastic lymphoma kinase aberrations in rhabdomyosarcoma: clinical and prognostic implications. J Clin Oncol. 2012;30:308–15.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario A. Hermsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hermsen, M.A. et al. (2020). Molecular Pathology of Sinonasal Tumors. In: Franchi, A. (eds) Pathology of Sinonasal Tumors and Tumor-Like Lesions. Springer, Cham. https://doi.org/10.1007/978-3-030-29848-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29848-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29847-0

  • Online ISBN: 978-3-030-29848-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics