Skip to main content

Advertisement

Log in

Advances in Immunotherapies for Gliomas

  • Neuro-Oncology (P.Y. Wen, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Immunotherapy-based treatment of glioblastoma has been challenging because of the tumor’s limited neoantigen profile and weakly immunogenic composition. This article summarizes the current clinical trials underway by evaluating the leading immunotherapy paradigms, the encountered barriers, and the future directions needed to overcome such tumor evasion.

Recent Findings

A limited number of phase III trials have been completed for checkpoint inhibitor, vaccine, as well as gene therapies, and have been unable to show improvement in survival outcomes. Nevertheless, these trials have also shown these strategies to be safe and promising with further adaptations. Further large-scale studies for chimeric antigen receptors T cell therapies and viral therapies are anticipated.

Summary

Many current trials are broadening the number of antigens targeted and modulating the microtumor environment to abrogate early mechanisms of resistance. Future GBM treatment will also likely require synergistic effects by combination regimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Stupp R, Weber DC. The role of radio- and chemotherapy in glioblastoma. Onkologie. 2005;28(6–7):315–7.

    PubMed  Google Scholar 

  2. • Chongsathidkiet P, Jackson C, Koyama S, Loebel F, Cui X, Farber SH, et al. Sequestration of T cells in bone marrow in the setting of glioblastoma and other intracranial tumors. Nat Med. 2018;24(9):1459-68. Murine and human study demonstrating that T cell lymphopenia is accompanied by naïve T cell accumulation in bone marrow, attributed to S1P1 on the T cell surface.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jackson CM, Choi J, Lim M. Mechanisms of immunotherapy resistance: lessons from glioblastoma. Nat Immunol. 2019;20(9):1100–9.

    Article  CAS  PubMed  Google Scholar 

  4. Gandhi L, Garassino MC. Pembrolizumab plus chemotherapy in lung cancer. N Engl J Med. 2018;379(11):e18.

  5. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Rutkowski P, Lao CD, et al. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med. 2019;381(16):1535–46.

    Article  CAS  PubMed  Google Scholar 

  6. Lim M, Xia Y, Bettegowda C, Weller M. Current state of immunotherapy for glioblastoma. Nat Rev Clin Oncol. 2018;15(7):422–42.

    Article  CAS  PubMed  Google Scholar 

  7. Ribas A. Tumor immunotherapy directed at PD-1. N Engl J Med. 2012;366(26):2517–9.

    Article  CAS  PubMed  Google Scholar 

  8. Syn NL, Teng MWL, Mok TSK, Soo RA. De-novo and acquired resistance to immune checkpoint targeting. Lancet Oncol. 2017;18(12):e731–41.

    Article  PubMed  Google Scholar 

  9. Garcia-Diaz A, Shin DS, Moreno BH, Saco J, Escuin-Ordinas H, Rodriguez GA, et al. Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression. Cell Rep. 2017;19(6):1189–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. •• Reardon DA, Brandes AA, Omuro A, Mulholland P, Lim M, Wick A, et al. Effect of nivolumab vs bevacizumab in patients with recurrent glioblastoma: the CheckMate 143 phase 3 randomized clinical trial. JAMA Oncology. 2020;6(7):1003-10. The first randomized phase III trial investigating an immune checkpoint inhibitor in patients with a primary brain tumor. Outcomes did not show clinical benefit.

    Article  PubMed  Google Scholar 

  11. Bristol-Myers Squibb announces phase 3 CheckMate -498 Study Did Not Meet Primary Endpoint of Overall Survival with Opdivo (nivolumab) Plus Radiation in Patients with Newly Diagnosed MGMT-Unmethylated Glioblastoma Multiforme 2019 [Available from: https://news.bms.com/news/corporate-financial/2019/Bristol-Myers-Squibb-Announces-Phase-3-CheckMate--498-Study-Did-Not-Meet-Primary-Endpoint-of-Overall-Survival-with-Opdivo-nivolumab-Plus-Radiation-in-Patients-with-Newly-Diagnosed-MGMT-Unmethylated-Glioblastoma-Multiforme/default.aspx.

  12. Bristol Myers Squibb Announces Update on Phase 3 CheckMate -548 Trial Evaluating Patients with Newly Diagnosed MGMT-Methylated Glioblastoma Multiforme 2020 [Available from: https://news.bms.com/news/details/2020/Bristol-Myers-Squibb-Announces-Update-on-Phase-3-CheckMate--548-Trial-Evaluating-Patients-with-Newly-Diagnosed-MGMT-Methylated-Glioblastoma-Multiforme/default.aspx.

  13. Prévost FHJ, Garth N, Ian L, Victorine S, Jasmine. Avelumab in newly diagnosed glioblastoma multiforme: the SEJ study. 2019. https://doi.org/10.1200/JCO20193715_supple13571.

  14. J DAR, Thomas Joseph K, Jorg D, Jennifer Leigh C, Gavin D, Michael L, et al. Phase II study to evaluate safety and efficacy of MEDI4736 (durvalumab) + radiotherapy in patients with newly diagnosed unmethylated MGMT glioblastoma (new unmeth GBM). 2019. https://doi.org/10.1200/JCO20193715_suppl2032.

  15. Lukas RV, Rodon J, Becker K, Wong ET, Shih K, Touat M, et al. Clinical activity and safety of atezolizumab in patients with recurrent glioblastoma. J Neurooncol. 2018;140(2):317–28.

    Article  CAS  PubMed  Google Scholar 

  16. Nejo T, Yamamichi A, Almeida ND, Goretsky YE, Okada H. Tumor antigens in glioma. Semin Immunol. 2020;47:101385.

  17. Tsuboi A, Hashimoto N, Fujiki F, Morimoto S, Kagawa N, Nakajima H, et al. A phase I clinical study of a cocktail vaccine of Wilms’ tumor 1 (WT1) HLA class I and II peptides for recurrent malignant glioma. Cancer Immunol Immunother. 2019;68(2):331–40.

    Article  CAS  PubMed  Google Scholar 

  18. Nakahara Y, Okamoto H, Mineta T, Tabuchi K. Expression of the Wilms’ tumor gene product WT1 in glioblastomas and medulloblastomas. Brain Tumor Pathol. 2004;21(3):113–6.

    Article  CAS  PubMed  Google Scholar 

  19. Van Driessche A, Berneman ZN, Van Tendeloo VF. Active specific immunotherapy targeting the Wilms’ tumor protein 1 (WT1) for patients with hematological malignancies and solid tumors: lessons from early clinical trials. Oncologist. 2012;17(2):250–9.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Nakatsuka S, Oji Y, Horiuchi T, Kanda T, Kitagawa M, Takeuchi T, et al. Immunohistochemical detection of WT1 protein in a variety of cancer cells. Mod Pathol. 2006;19(6):804–14.

    Article  CAS  PubMed  Google Scholar 

  21. Oji Y, Ogawa H, Tamaki H, Oka Y, Tsuboi A, Kim EH, et al. Expression of the Wilms’ tumor gene WT1 in solid tumors and its involvement in tumor cell growth. Jpn J Cancer Res. 1999;90(2):194–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Singh AB, Harris RC. Autocrine, paracrine and juxtacrine signaling by EGFR ligands. Cell Signal. 2005;17(10):1183–93.

    Article  CAS  PubMed  Google Scholar 

  23. Choi BD, Archer GE, Mitchell DA, Heimberger AB, McLendon RE, Bigner DD, et al. EGFRvIII-targeted vaccination therapy of malignant glioma. Brain Pathol. 2009;19(4):713–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sampson JH, Heimberger AB, Archer GE, Aldape KD, Friedman AH, Friedman HS, et al. Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma. J Clin Oncol. 2010;28(31):4722–9.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Weller M, Butowski N, Tran DD, Recht LD, Lim M, Hirte H, et al. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial. Lancet Oncol. 2017;18(10):1373–85.

    Article  CAS  PubMed  Google Scholar 

  26. • Rapp M, Grauer OM, Kamp M, Sevens N, Zotz N, Sabel M, et al. A randomized controlled phase II trial of vaccination with lysate-loaded, mature dendritic cells integrated into standard radiochemotherapy of newly diagnosed glioblastoma (GlioVax): study protocol for a randomized controlled trial. Trials. 2018;19(1):293. Early phase II trial data demonstrating the outcomes of a dendritic cell vaccine incorporating autologous and allogenic components.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Schijns VE, Pretto C, Devillers L, Pierre D, Hofman FM, Chen TC, et al. First clinical results of a personalized immunotherapeutic vaccine against recurrent, incompletely resected, treatment-resistant glioblastoma multiforme (GBM) tumors, based on combined allo- and auto-immune tumor reactivity. Vaccine. 2015;33(23):2690–6.

    Article  CAS  PubMed  Google Scholar 

  28. Schijns V, Pretto C, Strik AM, Gloudemans-Rijkers R, Deviller L, Pierre D, et al. Therapeutic immunization against glioblastoma. Int J Mol Sci. 2018;19(9).

  29. Keskin DB, Anandappa AJ, Sun J, Tirosh I, Mathewson ND, Li S, et al. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature. 2019;565(7738):234–9.

    Article  CAS  PubMed  Google Scholar 

  30. Hilf N, Kuttruff-Coqui S, Frenzel K, Bukur V, Stevanović S, Gouttefangeas C, et al. Actively personalized vaccination trial for newly diagnosed glioblastoma. Nature. 2019;565(7738):240–5.

    Article  CAS  PubMed  Google Scholar 

  31. Liau LM, Ashkan K, Tran DD, Campian JL, Trusheim JE, Cobbs CS, et al. First results on survival from a large phase 3 clinical trial of an autologous dendritic cell vaccine in newly diagnosed glioblastoma. J Transl Med. 2018;16(1):142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. CancerConnect. DCVax®-L for Glioblastoma - CancerConnect. 2021.

  33. Yao Y, Luo F, Tang C, Chen D, Qin Z, Hua W, et al. Molecular subgroups and B7–H4 expression levels predict responses to dendritic cell vaccines in glioblastoma: an exploratory randomized phase II clinical trial. Cancer Immunol Immunother. 2018;67(11):1777–88.

    Article  CAS  PubMed  Google Scholar 

  34. Koido S, Gong J. Characterization of structure and direct antigen presentation by dendritic/tumor-fused cells as cancer vaccines. Anticancer Res. 2013;33(2):347–54.

    CAS  PubMed  Google Scholar 

  35. Sampson JH, Gunn MD, Fecci PE, Ashley DM. Brain immunology and immunotherapy in brain tumours. Nat Rev Cancer. 2020;20(1):12–25.

    Article  CAS  PubMed  Google Scholar 

  36. Land CA, Musich PR, Haydar D, Krenciute G, Xie Q. Chimeric antigen receptor T-cell therapy in glioblastoma: charging the T cells to fight. J Transl Med. 2020;18(1):428.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sterner RC, Sterner RM. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J. 2021;11(4):69.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Janeway C. Immunobiology : the immune system in health and disease. 6th ed. New York: Garland Science; 2005. xxiii, 823 p. p.

  39. Garrido F, Aptsiauri N, Doorduijn EM, Garcia Lora AM, van Hall T. The urgent need to recover MHC class I in cancers for effective immunotherapy. Curr Opin Immunol. 2016;39:44–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Abate-Daga D, Davila ML. CAR models: next-generation CAR modifications for enhanced T-cell function. Mol Ther Oncolytics. 2016;3:16014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sattiraju A, Solingapuram Sai KK, Xuan A, Pandya DN, Almaguel FG, Wadas TJ, et al. IL13RA2 targeted alpha particle therapy against glioblastomas. Oncotarget. 2017;8(26):42997–3007.

    Article  PubMed  PubMed Central  Google Scholar 

  42. •• Brown CE, Badie B, Barish ME, Weng L, Ostberg JR, Chang WC, et al. Bioactivity and safety of IL13Ralpha2-redirected chimeric antigen receptor CD8+ T cells in patients with recurrent glioblastoma. Clin Cancer Res. 2015;21(18):4062–72. The first clinical trial investigating chimeric antigen receptor T cells in GBM. Outcomes did not suggest clinical benefit.

  43. Brown CE, Alizadeh D, Starr R, Weng L, Wagner JR, Naranjo A, et al. Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N Engl J Med. 2016;375(26):2561–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. • Chistiakov DA, Chekhonin IV, Chekhonin VP. The EGFR variant III mutant as a target for immunotherapy of glioblastoma multiforme. Eur J Pharmacol. 2017;810:70-82. Early phase I trial demonstrating potential translational potential of pp65 as a vaccine target.

    Article  CAS  PubMed  Google Scholar 

  45. O'Rourke DM, Nasrallah MP, Desai A, Melenhorst JJ, Mansfield K, Morrissette JJD, et al. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci Transl Med. 2017;9(399).

  46. Goff SL, Morgan RA, Yang JC, Sherry RM, Robbins PF, Restifo NP, et al. Pilot trial of adoptive transfer of chimeric antigen receptor-transduced T cells targeting EGFRvIII in patients with glioblastoma. J Immunother. 2019;42(4):126–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang JL, Scheitler KM, Wenger NM, Elder JB. Viral therapies for glioblastoma and high-grade gliomas in adults: a systematic review. Neurosurg Focus. 2021;50(2):E2.

    Article  PubMed  Google Scholar 

  48. Batich KA, Reap EA, Archer GE, Sanchez-Perez L, Nair SK, Schmittling RJ, et al. Long-term survival in glioblastoma with cytomegalovirus pp65-targeted vaccination. Clin Cancer Res. 2017;23(8):1898–909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. • Spencer DA, Young JS, Kanojia D, Kim JW, Polster SP, Murphy JP, et al. Unlocking the promise of oncolytic virotherapy in glioma: combination with chemotherapy to enhance efficacy. Ther Deliv. 2015;6(4):453-68. Early phase I application show outcomes benefits of an oncolytic adenovirus-based therapy with enhanced infection rates.

    Article  CAS  PubMed  Google Scholar 

  50. Cerullo V, Diaconu I, Kangasniemi L, Rajecki M, Escutenaire S, Koski A, et al. Immunological effects of low-dose cyclophosphamide in cancer patients treated with oncolytic adenovirus. Mol Ther. 2011;19(9):1737–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010;363(5):411–22.

    Article  CAS  PubMed  Google Scholar 

  52. Rojas JJ, Guedan S, Searle PF, Martinez-Quintanilla J, Gil-Hoyos R, Alcayaga-Miranda F, et al. Minimal RB-responsive E1A promoter modification to attain potency, selectivity, and transgene-arming capacity in oncolytic adenoviruses. Mol Ther. 2010;18(11):1960–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lang FF, Conrad C, Gomez-Manzano C, Yung WKA, Sawaya R, Weinberg JS, et al. Phase I study of DNX-2401 (delta-24-RGD) oncolytic adenovirus: replication and immunotherapeutic effects in recurrent malignant glioma. J Clin Oncol. 2018;36(14):1419–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Friedman GK, Johnston JM, Bag AK, Bernstock JD, Li R, Aban I, et al. Oncolytic HSV-1 G207 immunovirotherapy for pediatric high-grade gliomas. N Engl J Med. 2021;384(17):1613–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Patel DM, Foreman PM, Nabors LB, Riley KO, Gillespie GY, Markert JM. Design of a phase I clinical trial to evaluate M032, a genetically engineered HSV-1 expressing IL-12, in patients with recurrent/progressive glioblastoma multiforme, anaplastic astrocytoma, or gliosarcoma. Hum Gene Ther Clin Dev. 2016;27(2):69–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Perez OD, Logg CR, Hiraoka K, Diago O, Burnett R, Inagaki A, et al. Design and selection of Toca 511 for clinical use: modified retroviral replicating vector with improved stability and gene expression. Mol Ther. 2012;20(9):1689–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cloughesy TF, Landolfi J, Hogan DJ, Bloomfield S, Carter B, Chen CC, et al. Phase 1 trial of vocimagene amiretrorepvec and 5-fluorocytosine for recurrent high-grade glioma. Sci Transl Med. 2016;8(341):341ra75.

  58. Cloughesy TF, Landolfi J, Vogelbaum MA, Ostertag D, Elder JB, Bloomfield S, et al. Durable complete responses in some recurrent high-grade glioma patients treated with Toca 511 + Toca FC. Neuro Oncol. 2018;20(10):1383–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cloughesy T, University of California Los Angeles LACAUSA, Petrecca K, Montreal Neurological Institute MQCC, Walbert T, Hermelin Brain Tumor Center at Henry Ford Health System Detroit HFHSDMIUSA, et al. LTBK-08. TOCA 511 & TOCA FC versus standard of care in patients with recurrent high grade glioma. Neuro-Oncology. 2021;21(Supplement_6).

  60. Escobar G, Moi D, Ranghetti A, Ozkal-Baydin P, Squadrito ML, Kajaste-Rudnitski A, et al. Genetic engineering of hematopoiesis for targeted IFN-alpha delivery inhibits breast cancer progression. Sci Transl Med. 2014;6(217):217ra3.

  61. Dnatrix I. DNAtrix announces first patient dosed in clinical study of DNX-2440, an OX40 ligand expressing immunotherapy, in colorectal cancer and other cancers with liver metastasis: @PRNewswire; 2021 [Available from: https://www.prnewswire.com/news-releases/dnatrix-announces-first-patient-dosed-in-clinical-study-of-dnx-2440-an-ox40-ligand-expressing-immunotherapy-in-colorectal-cancer-and-other-cancers-with-liver-metastasis-301240246.html.

  62. • Zadeh G, Daras M, Cloughesy TF, Colman H, Kumthekar P, Chen CC, et al. LTBK-04. Phase 2 multicenter study of the oncolytic adenovirus DNX-2401 (Tasadenoturev) in combination with pembrolizumab for recurrent glioblastoma; captive study (KEYNOTE-192). Neuro-oncology. 2020;22. Single-cell expression study of cell markers of myeloid derivatives show them to be spatially varied in glioblastoma.

  63. Almutairi AR, McBride A, Slack M, Erstad BL, Abraham I. Potential immune-related adverse events associated with monotherapy and combination therapy of ipilimumab, nivolumab, and pembrolizumab for advanced melanoma: a systematic review and meta-analysis. Front Oncol. 2020;10:91.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Kim JE, Patel MA, Mangraviti A, Kim ES, Theodros D, Velarde E, et al. Combination therapy with anti-PD-1, anti-TIM-3, and focal radiation results in regression of murine gliomas. Clin Cancer Res. 2017;23(1):124–36.

    Article  CAS  PubMed  Google Scholar 

  65. Harris-Bookman S, Mathios D, Martin AM, Xia Y, Kim E, Xu H, et al. Expression of LAG-3 and efficacy of combination treatment with anti-LAG-3 and anti-PD-1 monoclonal antibodies in glioblastoma. Int J Cancer. 2018;143(12):3201–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ladomersky E, Zhai L, Lenzen A, Lauing KL, Qian J, Scholtens DM, et al. IDO1 Inhibition synergizes with radiation and PD-1 blockade to durably increase survival against advanced glioblastoma. Clin Cancer Res. 2018;24(11):2559–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zeng J, See AP, Phallen J, Jackson CM, Belcaid Z, Ruzevick J, et al. Anti-PD-1 blockade and stereotactic radiation produce long-term survival in mice with intracranial gliomas. Int J Radiat Oncol Biol Phys. 2013;86(2):343–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ochocka N, Segit P, Walentynowicz KA, Wojnicki K, Cyranowski S, Swatler J, et al. Single-cell RNA sequencing reveals functional heterogeneity of glioma-associated brain macrophages. Nat Commun. 2021;12(1):1151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Choi J, Mai N, Jackson C, Belcaid Z, Lim M. It takes two: potential therapies and insights involving microglia and macrophages in glioblastoma. Neuroimmunology and Neuroinflammation. 2018;5(42).

  70. Kees T, Lohr J, Noack J, Mora R, Gdynia G, Todt G, et al. Microglia isolated from patients with glioma gain antitumor activities on poly (I:C) stimulation. Neuro Oncol. 2012;14(1):64–78.

    Article  CAS  PubMed  Google Scholar 

  71. Garzon-Muvdi T, Theodros D, Luksik AS, Maxwell R, Kim E, Jackson CM, et al. Dendritic cell activation enhances anti-PD-1 mediated immunotherapy against glioblastoma. Oncotarget. 2018;9(29):20681–97.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Carpentier A, Metellus P, Ursu R, Zohar S, Lafitte F, Barrie M, et al. Intracerebral administration of CpG oligonucleotide for patients with recurrent glioblastoma: a phase II study. Neuro Oncol. 2010;12(4):401–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ursu R, Carpentier A, Metellus P, Lubrano V, Laigle-Donadey F, Capelle L, et al. Intracerebral injection of CpG oligonucleotide for patients with de novo glioblastoma-A phase II multicentric, randomised study. Eur J Cancer. 2017;73:30–7.

    Article  CAS  PubMed  Google Scholar 

  74. Pyonteck SM, Akkari L, Schuhmacher AJ, Bowman RL, Sevenich L, Quail DF, et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med. 2013;19(10):1264–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yan D, Kowal J, Akkari L, Schuhmacher AJ, Huse JT, West BL, et al. Inhibition of colony stimulating factor-1 receptor abrogates microenvironment-mediated therapeutic resistance in gliomas. Oncogene. 2017;36(43):6049–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Cheng Q, Li J, Fan F, Cao H, Dai ZY, Wang ZY, et al. Identification and analysis of glioblastoma biomarkers based on single cell sequencing. Front Bioeng Biotechnol. 2020;8:167.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Lim.

Ethics declarations

Conflict of Interest

Michael Zhang (Funding by the National Institutes of Health (5T32CA009695-27). Michael Lim (Funding from Arbor Pharmaceuticals, Accuray, BMS, Novartis, Biohaven; consultant: BMS, Merck, SQZ Biotechnologies, Tocagen, VBI, Biohaven; patents: combining focused radiation and immunotherapy, combining local chemotherapy and immunotherapy).

Human and Animal Rights

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Neuro-Oncology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Choi, J. & Lim, M. Advances in Immunotherapies for Gliomas. Curr Neurol Neurosci Rep 22, 1–10 (2022). https://doi.org/10.1007/s11910-022-01176-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-022-01176-9

Keywords

Navigation