Skip to main content

Advertisement

Log in

Medulloblastoma: Tumor Biology and Relevance to Treatment and Prognosis Paradigm

  • Neuro-oncology (LE Abrey, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Medulloblastoma is a malignant embryonic brain tumor arising in the posterior fossa and typically occurring in pediatric patients. Current multimodal treatment regimes have significantly improved the survival rates; however, a marked heterogeneity in therapy response is observed, and one third of all patients die within 5 years after diagnosis. Large-scale genetic and transcriptome analysis revealed four medulloblastoma subgroups (WNT, SHH, Group 3, and Group 4) associated with different demographic parameters, tumor manifestation, and clinical behavior. Future treatment protocols will integrate molecular classification schemes to evaluate subgroup-specific intensification or de-escalation of adjuvant therapies aimed to increase tumor control and reduce iatrogenic induced morbidity. Furthermore, the identification of genetic drivers allows assessing target therapies in order to increase the chemotherapeutic armamentarium. This review highlights the biology behind the current classification system and elucidates relevant aspects of the disease influencing forthcoming clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Dolecek TA, Propp JM, Stroup NE, et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005–2009. Neuro Oncol. 2012;14 Suppl 5:1–49.

    Article  Google Scholar 

  2. Smoll NR, Drummond KJ. The incidence of medulloblastomas and primitive neurectodermal tumours in adults and children. J Clin Neurosci. 2012;19(11):1541–4.

    Article  PubMed  Google Scholar 

  3. Park TS, Hoffman HJ, Hendrick EB, et al. Medulloblastoma: clinical presentation and management. Experience at the hospital for sick children, toronto, 1950–1980. J Neurosurg. 1983;58(4):543–52.

    Article  CAS  PubMed  Google Scholar 

  4. Sutton LN, Phillips PC, Molloy PT. Surgical management of medulloblastoma. J Neurooncol. 1996;29(1):9–21.

    Article  CAS  PubMed  Google Scholar 

  5. Northcott PA, Korshunov A, Witt H, et al. Medulloblastoma comprises four distinct molecular variants. J Clin Oncol. 2010;29(11):1408–14. Northcott et al. identified four different subgroups in a large cohort of medulloblastomas with disparate demographics, clinical presentation, transcriptional profiles, genetic abnormalities, and clinical outcome by an integrative genomic approach.

    Article  PubMed  Google Scholar 

  6. Taylor MD, Northcott PA, Korshunov A, et al. Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol. 2012;123(4):465–72. In a consensus conference in Boston held in 2010, experts from diferent laboratories agreed that the evidence supported the existence of four main subgroups of medulloblastoma as Wnt, Shh, Group 3, and Group 4. Participants outlined the demographic, transcriptional, genetic, and clinical differences between the four subgroups.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Faria CC, Golbourn BJ, Dubuc AM, et al. Foretinib is effective therapy for metastatic sonic hedgehog medulloblastoma. Cancer Res. 2015;75(1):134–46.

    Article  CAS  PubMed  Google Scholar 

  8. Gibson P, Tong Y, Robinson G, et al. Subtypes of medulloblastoma have distinct developmental origins. Nature. 2010;468(7327):1095–9. The authors first reported data supporting that subtypes of medulloblastoma have distinct cellular origins. Their results also showed prominent molecular and clinical differences between SHH- and WNT-subtype medulloblastomas.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bailey PCH. Medulloblastoma cerebelli. Arch Neurol Psychiatry. 1925;14:192–223.

    Article  Google Scholar 

  10. Rutka JT, Hoffman HJ. Medulloblastoma: a historical perspective and overview. J Neurooncol. 1996;29(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  11. Pomeroy SL, Tamayo P, Gaasenbeek M, et al. Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature. 2002;415(6870):436–42.

    Article  CAS  PubMed  Google Scholar 

  12. Gilbertson RJ, Ellison DW. The origins of medulloblastoma subtypes. Annu Rev Pathol. 2008;3:341–65.

    Article  CAS  PubMed  Google Scholar 

  13. Klein C, Butt SJ, Machold RP, et al. Cerebellum- and forebrain-derived stem cells possess intrinsic regional character. Development. 2005;132(20):4497–508.

    Article  CAS  PubMed  Google Scholar 

  14. Niehrs C. The complex world of WNT receptor signalling. Nat Rev Mol Cell Biol. 2012;13(12):767–79.

    Article  CAS  PubMed  Google Scholar 

  15. Villavicencio EH, Walterhouse DO, Iannaccone PM. The sonic hedgehog-patched-Gli pathway in human development and disease. Am J Hum Genet. 2000;67(5):1047–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shahi MH, Rey JA, Castresana JS. The sonic hedgehog-GLI1 signaling pathway in brain tumor development. Expert Opin Ther Targets. 2012;16(12):1227–38.

    Article  CAS  PubMed  Google Scholar 

  17. Varjosalo M, Taipale J. Hedgehog signaling. J Cell Sci. 2007;120(Pt 1):3–6.

    CAS  PubMed  Google Scholar 

  18. Lee Y, Kawagoe R, Sasai K, et al. Loss of suppressor-of-fused function promotes tumorigenesis. Oncogene. 2007;26(44):6442–7.

    Article  CAS  PubMed  Google Scholar 

  19. Ciani L, Salinas PC. WNTs in the vertebrate nervous system: from patterning to neuronal connectivity. Nat Rev Neurosci. 2005;6(5):351–62.

    Article  CAS  PubMed  Google Scholar 

  20. Li VS, Ng SS, Boersema PJ, et al. Wnt signaling through inhibition of beta-catenin degradation in an intact Axin1 complex. Cell. 2012;149(6):1245–56.

    Article  CAS  PubMed  Google Scholar 

  21. Northcott PA, Jones DT, Kool M, et al. Medulloblastomics: the end of the beginning. Nat Rev Cancer. 2012;12(12):818–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Danysh HE, Mitchell LE, Zhang K, et al. Traffic-related air pollution and the incidence of childhood central nervous system tumors: Texas, 2001–2009. Pediatr Blood Cancer. 2015;62(9):1572–8.

    Article  CAS  PubMed  Google Scholar 

  23. Bonaventure A, Simpson J, Ansell P, et al. Prescription drug use during pregnancy and risk of childhood cancer - is there an association? Cancer Epidemiol. 2015;39(1):73–8.

    Article  CAS  PubMed  Google Scholar 

  24. Hawkins C, Croul S. Viruses and human brain tumors: cytomegalovirus enters the fray. J Clin Invest. 2011;121(10):3831–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Evans G, Burnell L, Campbell R, et al. Congenital anomalies and genetic syndromes in 173 cases of medulloblastoma. Med Pediatr Oncol. 1993;21(6):433–4.

    Article  CAS  PubMed  Google Scholar 

  26. Gajjar AJ, Robinson GW. Medulloblastoma-translating discoveries from the bench to the bedside. Nat Rev Clin Oncol. 2014;11(12):714–22.

    Article  CAS  PubMed  Google Scholar 

  27. Smith MJ, Beetz C, Williams SG, et al. Germline mutations in SUFU cause Gorlin syndrome-associated childhood medulloblastoma and redefine the risk associated with PTCH1 mutations. J Clin Oncol. 2014;32(36):4155–61.

    Article  CAS  PubMed  Google Scholar 

  28. Hamilton SR, Liu B, Parsons RE, et al. The molecular basis of Turcot’s syndrome. N Engl J Med. 1995;332(13):839–47.

    Article  CAS  PubMed  Google Scholar 

  29. Rausch T, Jones DT, Zapatka M, et al. Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell. 2012;148(1–2):59–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kool M, Korshunov A, Remke M, et al. Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas. Acta Neuropathol. 2012;123(4):473–84. This meta-analysis assessed molecular and clinical data of medulloblastomas brought together from seven independent studies, which showed mostly congruent results of molecular subtypes with respect to transcriptome profile, DNA copy-number aberrations, demographics, and survival.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Katsetos CD, Liu HM, Zacks SI. Immunohistochemical and ultrastructural observations on Homer Wright (neuroblastic) rosettes and the “pale islands” of human cerebellar medulloblastomas. Hum Pathol. 1988;19(10):1219–27.

    Article  CAS  PubMed  Google Scholar 

  32. Ellison D. Classifying the medulloblastoma: insights from morphology and molecular genetics. Neuropathol Appl Neurobiol. 2002;28(4):257–82.

    Article  CAS  PubMed  Google Scholar 

  33. Louis DN, Ohgaki H, Wiestler OD, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114(2):97–109.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Gajjar A, Chintagumpala M, Ashley D, et al. Risk-adapted craniospinal radiotherapy followed by high-dose chemotherapy and stem-cell rescue in children with newly diagnosed medulloblastoma (St Jude Medulloblastoma-96): long-term results from a prospective, multicentre trial. Lancet Oncol. 2006;7(10):813–20.

    Article  PubMed  Google Scholar 

  35. Leary SE, Zhou T, Holmes E, et al. Histology predicts a favorable outcome in young children with desmoplastic medulloblastoma: a report from the children’s oncology group. Cancer. 2011;117(14):3262–7.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Grill J, Sainte-Rose C, Jouvet A, et al. Treatment of medulloblastoma with postoperative chemotherapy alone: an SFOP prospective trial in young children. Lancet Oncol. 2005;6(8):573–80.

    Article  CAS  PubMed  Google Scholar 

  37. Tarbell NJ, Friedman H, Polkinghorn WR, et al. High-risk medulloblastoma: a pediatric oncology group randomized trial of chemotherapy before or after radiation therapy (POG 9031). J Clin Oncol. 2013;31(23):2936–41.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Rutkowski S, Bode U, Deinlein F, et al. Treatment of early childhood medulloblastoma by postoperative chemotherapy alone. N Engl J Med. 2005;352(10):978–86.

    Article  CAS  PubMed  Google Scholar 

  39. Duffner PK, Horowitz ME, Krischer JP, et al. The treatment of malignant brain tumors in infants and very young children: an update of the Pediatric Oncology Group experience. Neuro Oncol. 1999;1(2):152–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Uday S, Murray RD, Picton S, et al. Endocrine sequelae beyond 10 years in survivors of medulloblastoma. Clin Endocrinol (Oxf). 2015;83(5):663–70.

    Article  CAS  Google Scholar 

  41. Camara-Costa H, Resch A, Kieffer V, et al. Neuropsychological Outcome of Children Treated for Standard Risk Medulloblastoma in the PNET4 European Randomized Controlled Trial of Hyperfractionated Versus Standard Radiation Therapy and Maintenance Chemotherapy. Int J Radiat Oncol Biol Phys. 2015;92(5):978–85.

    Article  PubMed  Google Scholar 

  42. Packer RJ, Zhou T, Holmes E, et al. Survival and secondary tumors in children with medulloblastoma receiving radiotherapy and adjuvant chemotherapy: results of Children’s Oncology Group trial A9961. Neuro Oncol. 2013;15(1):97–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ning MS, Perkins SM, Dewees T, et al. Evidence of high mortality in long term survivors of childhood medulloblastoma. J Neurooncol. 2015;122(2):321–7.

    Article  CAS  PubMed  Google Scholar 

  44. Chang CH, Housepian EM, Herbert Jr C. An operative staging system and a megavoltage radiotherapeutic technic for cerebellar medulloblastomas. Radiology. 1969;93(6):1351–9.

    Article  CAS  PubMed  Google Scholar 

  45. Packer RJ, Vezina G. Management of and prognosis with medulloblastoma: therapy at a crossroads. Arch Neurol. 2008;65(11):1419–24.

    Article  PubMed  Google Scholar 

  46. Packer RJ, Goldwein J, Nicholson HS, et al. Treatment of children with medulloblastomas with reduced-dose craniospinal radiation therapy and adjuvant chemotherapy: a Children’s Cancer Group Study. J Clin Oncol. 1999;17(7):2127–36.

    CAS  PubMed  Google Scholar 

  47. Louis DN, Perry A, Burger P, et al. International Society Of Neuropathology--Haarlem consensus guidelines for nervous system tumor classification and grading. Brain Pathol. 2014;24(5):429–35.

    Article  PubMed  Google Scholar 

  48. Thompson MC, Fuller C, Hogg TL, et al. Genomics identifies medulloblastoma subgroups that are enriched for specific genetic alterations. J Clin Oncol. 2006;24(12):1924–31.

    Article  CAS  PubMed  Google Scholar 

  49. Northcott PA, Shih DJ, Peacock J, et al. Subgroup-specific structural variation across 1,000 medulloblastoma genomes. Nature. 2012;488(7409):49–56. This study reported a wide range of somatic copy number aberrations assigned to the four molecular variants which help to identify relevant targets for subgroup specific therapy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shih DJ, Northcott PA, Remke M, et al. Cytogenetic prognostication within medulloblastoma subgroups. J Clin Oncol. 2014;32(9):886–96. The authors identified a panel of cytogenetic biomarkers across medulloblastoma subtypes, enabeling to assing patients into very high-risk and very low-risk groups. This study proposes combining subgroup and molecular biomarkers with clinical biomarkers to improve patient prognostication.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Pietsch T, Schmidt R, Remke M, et al. Prognostic significance of clinical, histopathological, and molecular characteristics of medulloblastomas in the prospective HIT2000 multicenter clinical trial cohort. Acta Neuropathol. 2014;128(1):137–49. The purpose of the study was to prospectively evaluate clinical, histopathological and molecular variables for outcome prediction in medulloblastoma patients. A simple clinico-pathological risk score was identified.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Northcott PA, Hielscher T, Dubuc A, et al. Pediatric and adult sonic hedgehog medulloblastomas are clinically and molecularly distinct. Acta Neuropathol. 2011;122(2):231–40.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kool M, Jones DT, Jager N, et al. Genome sequencing of SHH medulloblastoma predicts genotype-related response to smoothened inhibition. Cancer Cell. 2014;25(3):393–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wefers AK, Warmuth-Metz M, Poschl J, et al. Subgroup-specific localization of human medulloblastoma based on pre-operative MRI. Acta Neuropathol. 2014;127(6):931–3.

    Article  PubMed  Google Scholar 

  55. Ohli J, Neumann JE, Grammel D, et al. Localization of SHH medulloblastoma in mice depends on the age at its initiation. Acta Neuropathol. 2015;130(2):307–9.

    Article  PubMed  Google Scholar 

  56. Zhukova N, Ramaswamy V, Remke M, et al. Subgroup-specific prognostic implications of TP53 mutation in medulloblastoma. J Clin Oncol. 2013;31(23):2927–35. Zhukova et al. investigated the prognostic impact of TP53 mutations in pediatric medulloblastoma and found that TP53 mutations are enriched among SHH medulloblastomas, in which they indicate poor outcome and treatment failure in these patients.

    Article  PubMed  Google Scholar 

  57. Remke M, Ramaswamy V, Peacock J, et al. TERT promoter mutations are highly recurrent in SHH subgroup medulloblastoma. Acta Neuropathol. 2013;126(6):917–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gajjar A, Pfister SM, Taylor MD, et al. Molecular insights into pediatric brain tumors have the potential to transform therapy. Clin Cancer Res. 2014;20(22):5630–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Northcott PA, Lee C, Zichner T, et al. Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma. Nature. 2014;511(7510):428–34. In this study a series of prevalent, highly different genomic structural variants of groups 3 and 4, resulting in specific and mutually exclusive activation of proto-oncogenes was described. GFI1 and GFI1B are shown to be activated by ‘enhancer hijacking’ and identified as prominent medulloblastoma oncogenes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pfaff E, Remke M, Sturm D, et al. TP53 mutation is frequently associated with CTNNB1 mutation or MYCN amplification and is compatible with long-term survival in medulloblastoma. J Clin Oncol. 2010;28(35):5188–96.

    Article  CAS  PubMed  Google Scholar 

  61. Korshunov A, Remke M, Kool M, et al. Biological and clinical heterogeneity of MYCN-amplified medulloblastoma. Acta Neuropathol. 2012;123(4):515–27.

    Article  CAS  PubMed  Google Scholar 

  62. Rutkowski S, von Hoff K, Emser A, et al. Survival and prognostic factors of early childhood medulloblastoma: an international meta-analysis. J Clin Oncol. 2010;28(33):4961–8.

    Article  PubMed  Google Scholar 

  63. Riffaud L, Saikali S, Leray E, et al. Survival and prognostic factors in a series of adults with medulloblastomas. J Neurosurg. 2009;111(3):478–87.

    Article  PubMed  Google Scholar 

  64. Rochkind S, Blatt I, Sadeh M, et al. Extracranial metastases of medulloblastoma in adults: literature review. J Neurol Neurosurg Psychiatry. 1991;54(1):80–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang X, Dubuc AM, Ramaswamy V, et al. Medulloblastoma subgroups remain stable across primary and metastatic compartments. Acta Neuropathol. 2015;129(3):449–57. This study represents the largest primary-metastatic paired cohort used to analyse subgroup-specific molecular aberrations within the metastatic compartment. The acquired data supports the hypothesis that medulloblastoma subgroups arise from distinct cells of origin.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mumert M, Dubuc A, Wu X, et al. Functional genomics identifies drivers of medulloblastoma dissemination. Cancer Res. 2012;72(19):4944–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Jenkins NC, Kalra RR, Dubuc A, et al. Genetic drivers of metastatic dissemination in sonic hedgehog medulloblastoma. Acta Neuropathol Commun. 2014;2:85.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Snuderl M, Batista A, Kirkpatrick ND, et al. Targeting placental growth factor/neuropilin 1 pathway inhibits growth and spread of medulloblastoma. Cell. 2013;152(5):1065–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ramaswamy V, Remke M, Bouffet E, et al. Recurrence patterns across medulloblastoma subgroups: an integrated clinical and molecular analysis. Lancet Oncol. 2013;14(12):1200–7. This study determines subgroup-specific differences in medulloblastoma recurrence patterns and potential treatment strategies. It reveals that medulloblastomas do not switch subgroup at the time of recurrence and shows significant differences in timing and location of recurrence.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Poschl J, Koch A, Schuller U. Histological subtype of medulloblastoma frequently changes upon recurrence. Acta Neuropathol. 2015;129(3):459–61.

    Article  PubMed  Google Scholar 

  71. Clifford SC, Lannering B, Schwalbe EC, et al.: Biomarker-driven stratification of disease-risk in non-metastatic medulloblastoma: results from the multi-center HIT-SIOP-PNET4 clinical trial. Oncotarget. 2015. This paper shows that biomarkers validated across medulloblastomas groups and determined as high-risk prognosticators behave differently in clinically-defined standard-risk medulloblastoma.

  72. Kocakaya S, Beier CP, Beier D. Chemotherapy increases long-term survival in patients with adult medulloblastoma-a literature-based meta-analysis. Neuro Oncol. 2016;18(3):408–16. doi:10.1093/neuonc/nov185.

  73. Rutkowski S, Cohen B, Finlay J, et al. Medulloblastoma in young children. Pediatr Blood Cancer. 2010;54(4):635–7.

    Article  PubMed  Google Scholar 

  74. Michiels EM, Schouten-Van Meeteren AY, Doz F, et al. Chemotherapy for children with medulloblastoma. Cochrane Database Syst Rev. 2015;1:CD006678.

    PubMed  Google Scholar 

  75. Goschzik T, Zur Muhlen A, Kristiansen G, et al. Molecular stratification of medulloblastoma: comparison of histological and genetic methods to detect Wnt activated tumours. Neuropathol Appl Neurobiol. 2015;41(2):135–44.

    Article  CAS  PubMed  Google Scholar 

  76. Kahn M. Can we safely target the WNT pathway? Nat Rev Drug Discov. 2014;13(7):513–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Cimmino F, Scoppettuolo MN, Carotenuto M, et al. Norcantharidin impairs medulloblastoma growth by inhibition of Wnt/beta-catenin signaling. J Neurooncol. 2012;106(1):59–70.

    Article  CAS  PubMed  Google Scholar 

  78. Zinke J, Schneider FT, Harter PN, et al. beta-Catenin-Gli1 interaction regulates proliferation and tumor growth in medulloblastoma. Mol Cancer. 2015;14:17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Salaroli R, Ronchi A, Buttarelli FR, et al. Wnt activation affects proliferation, invasiveness and radiosensitivity in medulloblastoma. J Neurooncol. 2015;121(1):119–27.

    Article  CAS  PubMed  Google Scholar 

  80. Migden MR, Guminski A, Gutzmer R, et al. Treatment with two different doses of sonidegib in patients with locally advanced or metastatic basal cell carcinoma (BOLT): a multicentre, randomised, double-blind phase 2 trial. Lancet Oncol. 2015;16(6):716–28.

    Article  CAS  PubMed  Google Scholar 

  81. Sekulic A, Migden MR, Oro AE, et al. Efficacy and safety of vismodegib in advanced basal-cell carcinoma. N Engl J Med. 2012;366(23):2171–9.

    Article  CAS  PubMed  Google Scholar 

  82. Gajjar A, Stewart CF, Ellison DW, et al. Phase I study of vismodegib in children with recurrent or refractory medulloblastoma: a pediatric brain tumor consortium study. Clin Cancer Res. 2013;19(22):6305–12.

    Article  CAS  PubMed  Google Scholar 

  83. Robinson GW, Orr BA, Wu G, et al. Vismodegib exerts targeted efficacy against recurrent sonic hedgehog-subgroup medulloblastoma: results from phase II pediatric brain tumor consortium studies PBTC-025B and PBTC-032. J Clin Oncol. 2015;33(24):2646–54.

    Article  CAS  PubMed  Google Scholar 

  84. Rudin CM, Hann CL, Laterra J, et al. Treatment of medulloblastoma with hedgehog pathway inhibitor GDC-0449. N Engl J Med. 2009;361(12):1173–8.

    Article  CAS  PubMed  Google Scholar 

  85. Yauch RL, Dijkgraaf GJ, Alicke B, et al. Smoothened mutation confers resistance to a Hedgehog pathway inhibitor in medulloblastoma. Science. 2009;326(5952):572–4.

    Article  CAS  PubMed  Google Scholar 

  86. Buonamici S, Williams J, Morrissey M, et al.: Interfering with resistance to smoothened antagonists by inhibition of the PI3K pathway in medulloblastoma. Sci Transl Med. 2010;2(51):51ra70.

  87. Zhao X, Ponomaryov T, Ornell KJ, et al. RAS/MAPK Activation Drives Resistance to Smo Inhibition, Metastasis, and Tumor Evolution in Shh Pathway-Dependent Tumors. Cancer Res. 2015;75(17):3623–35.

    Article  CAS  PubMed  Google Scholar 

  88. Kim J, Aftab BT, Tang JY, et al. Itraconazole and arsenic trioxide inhibit Hedgehog pathway activation and tumor growth associated with acquired resistance to smoothened antagonists. Cancer Cell. 2013;23(1):23–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tang Y, Gholamin S, Schubert S, et al. Epigenetic targeting of Hedgehog pathway transcriptional output through BET bromodomain inhibition. Nat Med. 2014;20(7):732–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ransohoff KJ, Sarin KY, Tang JY. Smoothened Inhibitors in Sonic Hedgehog Subgroup Medulloblastoma. J Clin Oncol. 2015;33(24):2692–4.

    Article  CAS  PubMed  Google Scholar 

  91. Lee MJ, Hatton BA, Villavicencio EH, et al. Hedgehog pathway inhibitor saridegib (IPI-926) increases lifespan in a mouse medulloblastoma model. Proc Natl Acad Sci U S A. 2012;109(20):7859–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Morfouace M, Shelat A, Jacus M, et al. Pemetrexed and gemcitabine as combination therapy for the treatment of Group3 medulloblastoma. Cancer Cell. 2014;25(4):516–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bandopadhayay P, Bergthold G, London WB, et al. Long-term outcome of 4,040 children diagnosed with pediatric low-grade gliomas: an analysis of the Surveillance Epidemiology and End Results (SEER) database. Pediatr Blood Cancer. 2014;61(7):1173–9.

    Article  PubMed  PubMed Central  Google Scholar 

  94. A clinical and molecular risk-directed therapy for newly diagnosed medulloblastoma. https://clinicaltrials.gov/ct2/show/NCT01878617 Accessed October 2015. The aim of this trial is to stratify medulloblastoma treatment in a phase II clinical trial based on both clinical risk and molecular subgroups.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James T. Rutka.

Ethics declarations

Conflict of Interest

Daniel Coluccia, Carlyn Figuereido, Semra Isik, Christian Smith, and James T. Rutka declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Neuro-Oncology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coluccia, D., Figuereido, C., Isik, S. et al. Medulloblastoma: Tumor Biology and Relevance to Treatment and Prognosis Paradigm. Curr Neurol Neurosci Rep 16, 43 (2016). https://doi.org/10.1007/s11910-016-0644-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-016-0644-7

Keywords

Navigation