Skip to main content

Advertisement

Log in

Norcantharidin impairs medulloblastoma growth by inhibition of Wnt/β-catenin signaling

  • Laboratory Investigation - Human/Animal Tissue
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Medulloblastoma is one of the leading causes of morbidity and mortality in pediatric cancer. Wnt-active tumors, an independent molecular subgroup in medulloblastoma, are characterized by a distinct pattern of genomic aberrations. We assessed the anticancer activity of cantharidin and norcantharidin against medulloblastoma, as cell lines in vitro and in athymic nude mice in vivo. Cantharidin and norcantharidin treatment impaired the growth of DAOY and UW228 medulloblastoma cells and promoted the loss of β-catenin activation and the β-catenin nuclearization linked to N-cadherin impairment in vitro. Intra-peritoneal administration of norcantharidin inhibited the growth of intra-cerebellum tumors in orthotopic xenograft nude mice. Analysis of the xenograft tissues revealed enhanced neuronal differentiation and reduced β-catenin expression. Our findings suggest that norcantharidin has potential therapeutic applications in the treatment of medulloblastoma as a result of its ability to cross the blood–brain barrier and its impairment of Wnt-β-catenin signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. de Bont JM, Packer RJ, Michiels EM, den Boer ML, Pieters R (2008) Biological background of pediatric medulloblastoma and ependymoma: a review from a translational research perspective. Neuro Oncol 10(6):1040–1060

    Article  PubMed  Google Scholar 

  2. Wang Q, Li H, Liu N, Chen XY, Wu ML, Zhang KL, Kong QY, Liu J (2008) Correlative analyses of notch signaling with resveratrol-induced differentiation and apoptosis of human medulloblastoma cells. Neurosci Lett 438(2):168–173

    Article  PubMed  CAS  Google Scholar 

  3. Yang ZJ, Ellis T, Markant SL, Read TA, Kessler JD, Bourboulas M, Schuller U, Machold R, Fishell G, Rowitch DH, Wainwright BJ, Wechsler-Reya RJ (2008) Medulloblastoma can be initiated by deletion of patched in lineage-restricted progenitors or stem cells. Cancer Cell 14(2):135–145

    Article  PubMed  CAS  Google Scholar 

  4. Gilbertson RJ, Ellison DW (2008) The origins of medulloblastoma subtypes. Annu Rev Pathol 3:341–365

    Article  PubMed  CAS  Google Scholar 

  5. Guessous F, Li Y, Abounader R (2008) Signaling pathways in medulloblastoma. J Cell Physiol 217(3):577–583

    Article  PubMed  CAS  Google Scholar 

  6. Grotzer MA, von Hoff K, von Bueren AO, Shalaby T, Hartmann W, Warmuth-Metz M, Emser A, Kortmann RD, Kuehl J, Pietsch T, Rutkowski S (2007) Which clinical and biological tumor markers proved predictive in the prospective multicenter trial HIT’91—implications for investigating childhood medulloblastoma. Klin Padiatr 219(6):312–317

    Article  PubMed  CAS  Google Scholar 

  7. Pfister S, Remke M, Benner A, Mendrzyk F, Toedt G, Felsberg J, Wittmann A, Devens F, Gerber NU, Joos S, Kulozik A, Reifenberger G, Rutkowski S, Wiestler OD, Radlwimmer B, Scheurlen W, Lichter P, Korshunov A (2009) Outcome prediction in pediatric medulloblastoma based on DNA copy-number aberrations of chromosomes 6q and 17q and the MYC and MYCN loci. J Clin Oncol 27(10):1627–1636

    Article  PubMed  Google Scholar 

  8. Ellison DW, Kocak M, Dalton J, Megahed H, Lusher ME, Ryan SL, Zhao W, Nicholson SL, Taylor RE, Bailey S, Clifford SC (2010) Definition of disease-risk stratification groups in childhood medulloblastoma using combined clinical, pathologic, and molecular variables. J Clin Oncol 29:1400–1407

    Article  PubMed  Google Scholar 

  9. Clifford SC, O’Toole K, Ellison DW (2009) Chromosome 1q gain is not associated with a poor outcome in childhood medulloblastoma: requirements for the validation of potential prognostic biomarkers. Cell Cycle 8(5):787

    Article  PubMed  CAS  Google Scholar 

  10. Kool M, Koster J, Bunt J, Hasselt NE, Lakeman A, van Sluis P, Troost D, Meeteren NS, Caron HN, Cloos J, Mrsic A, Ylstra B, Grajkowska W, Hartmann W, Pietsch T, Ellison D, Clifford SC, Versteeg R (2008) Integrated genomics identifies five medulloblastoma subtypes with distinct genetic profiles, pathway signatures and clinicopathological features. PLoS One 3(8):e3088

    Article  PubMed  Google Scholar 

  11. Northcott PA, Korshunov A, Witt H, Hielscher T, Eberhart CG, Mack S, Bouffet E, Clifford SC, Hawkins CE, French P, Rutka JT, Pfister S, Taylor MD (2010) Medulloblastoma comprises four distinct molecular variants. J Clin Oncol 29(11):1408–1414

    Article  PubMed  Google Scholar 

  12. Holthouse DJ, Dallas PB, Ford J, Fabian V, Murch AR, Watson M, Wong G, Bertram C, Egli S, Baker DL, Kees UR (2009) Classic and desmoplastic medulloblastoma: complete case reports and characterizations of two new cell lines. Neuropathology 29(4):398–409

    Article  PubMed  Google Scholar 

  13. Katoh Y, Katoh M (2009) Hedgehog target genes: mechanisms of carcinogenesis induced by aberrant hedgehog signaling activation. Curr mol med 9(7):873–886

    Article  PubMed  CAS  Google Scholar 

  14. Perez-Martinez A, Lassaletta A, Gonzalez-Vicent M, Sevilla J, Diaz MA, Madero L (2005) High-dose chemotherapy with autologous stem cell rescue for children with high risk and recurrent medulloblastoma and supratentorial primitive neuroectodermal tumors. J Neurooncol 71(1):33–38

    Article  PubMed  CAS  Google Scholar 

  15. Rogers HA, Miller S, Lowe J, Brundler MA, Coyle B, Grundy RG (2009) An investigation of WNT pathway activation and association with survival in central nervous system primitive neuroectodermal tumours (CNS PNET). Br J Cancer 100(8):1292–1302

    Article  PubMed  CAS  Google Scholar 

  16. Ellison DW, Onilude OE, Lindsey JC, Lusher ME, Weston CL, Taylor RE, Pearson AD, Clifford SC (2005) Beta-catenin status predicts a favorable outcome in childhood medulloblastoma: the United Kingdom children’s cancer study group brain tumour committee. J Clin Oncol 23(31):7951–7957

    Article  PubMed  CAS  Google Scholar 

  17. Rogers L, Pattisapu J, Smith RR, Parker P (1988) Medulloblastoma in association with the Coffin-Siris syndrome. Childs Nerv Syst 4(1):41–44

    PubMed  CAS  Google Scholar 

  18. Zhai Y, Wu R, Schwartz DR, Darrah D, Reed H, Kolligs FT, Nieman MT, Fearon ER, Cho KR (2002) Role of beta-catenin/T-cell factor-regulated genes in ovarian endometrioid adenocarcinomas. Am J Pathol 160(4):1229–1238

    Article  PubMed  CAS  Google Scholar 

  19. Efferth T, Rauh R, Kahl S, Tomicic M, Bochzelt H, Tome ME, Briehl MM, Bauer R, Kaina B (2005) Molecular modes of action of cantharidin in tumor cells. Biochem Pharmacol 69(5):811–818

    Article  PubMed  CAS  Google Scholar 

  20. Rauh R, Kahl S, Boechzelt H, Bauer R, Kaina B, Efferth T (2007) Molecular biology of cantharidin in cancer cells. Chin Med 2:8

    Article  PubMed  Google Scholar 

  21. Shan HB, Cai YC, Liu Y, Zeng WN, Chen HX, Fan BT, Liu XH, Xu ZL, Wang B, Xian LJ (2006) Cytotoxicity of cantharidin analogues targeting protein phosphatase 2A. Anticancer Drugs 17(8):905–911

    Article  PubMed  CAS  Google Scholar 

  22. Huan SK, Lee HH, Liu DZ, Wu CC, Wang CC (2006) Cantharidin-induced cytotoxicity and cyclooxygenase 2 expression in human bladder carcinoma cell line. Toxicology 223(1–2):136–143

    Article  PubMed  CAS  Google Scholar 

  23. Dorn DC, Kou CA, Png KJ, Moore MA (2009) The effect of cantharidins on leukemic stem cells. Int J Cancer 124(9):2186–2199

    Article  PubMed  CAS  Google Scholar 

  24. Sagawa M, Nakazato T, Uchida H, Ikeda Y, Kizaki M (2008) Cantharidin induces apoptosis of human multiple myeloma cells via inhibition of the JAK/STAT pathway. Cancer Sci 99(9):1820–1826

    Article  PubMed  CAS  Google Scholar 

  25. Hill TA, Stewart SG, Sauer B, Gilbert J, Ackland SP, Sakoff JA, McCluskey A (2007) Heterocyclic substituted cantharidin and norcantharidin analogues—synthesis, protein phosphatase (1 and 2A) inhibition, and anti-cancer activity. Bioorg Med Chem Lett 17(12):3392–3397

    Article  PubMed  CAS  Google Scholar 

  26. Hill TA, Stewart SG, Gordon CP, Ackland SP, Gilbert J, Sauer B, Sakoff JA, McCluskey A (2008) Norcantharidin analogues: synthesis, anticancer activity and protein phosphatase 1 and 2A inhibition. Chem Med Chem 3(12):1878–1892

    PubMed  CAS  Google Scholar 

  27. McCluskey A, Ackland SP, Bowyer MC, Baldwin ML, Garner J, Walkom CC, Sakoff JA (2003) Cantharidin analogues: synthesis and evaluation of growth inhibition in a panel of selected tumour cell lines. Bioorg Chem 31(1):68–79

    Article  PubMed  CAS  Google Scholar 

  28. Huang Y, Liu Q, Liu K, Yagasaki K, Zhang G (2009) Suppression of growth of highly-metastatic human breast cancer cells by norcantharidin and its mechanisms of action. Cytotechnology 59(3):209

    Article  PubMed  Google Scholar 

  29. Luan J, Duan H, Liu Q, Yagasaki K, Zhang G (2010) Inhibitory effects of norcantharidin against human lung cancer cell growth and migration. Cytotechnology 62(4):349–355

    Article  PubMed  CAS  Google Scholar 

  30. Chen YJ, Tsai YM, Kuo CD, Ku KL, Shie HS, Liao HF (2009) Norcantharidin is a small-molecule synthetic compound with anti-angiogenesis effect. Life Sci 85(17–18):642–651

    Article  PubMed  CAS  Google Scholar 

  31. Chen YN, Chen JC, Yin SC, Wang GS, Tsauer W, Hsu SF, Hsu SL (2002) Effector mechanisms of norcantharidin-induced mitotic arrest and apoptosis in human hepatoma cells. Int J Cancer 100(2):158–165

    Article  PubMed  CAS  Google Scholar 

  32. Kok SH, Cheng SJ, Hong CY, Lee JJ, Lin SK, Kuo YS, Chiang CP, Kuo MY (2005) Norcantharidin-induced apoptosis in oral cancer cells is associated with an increase of proapoptotic to antiapoptotic protein ratio. Cancer Lett 217(1):43–52

    Article  PubMed  CAS  Google Scholar 

  33. Kok SH, Hong CY, Kuo MY, Lee CH, Lee JJ, Lou IU, Lee MS, Hsiao M, Lin SK (2003) Comparisons of norcantharidin cytotoxic effects on oral cancer cells and normal buccal keratinocytes. Oral Oncol 39(1):19–26

    Article  PubMed  CAS  Google Scholar 

  34. Peng C, Liu X, Liu E, Xu K, Niu W, Chen R, Wang J, Zhang Z, Lin P, Wang J, Agrez M, Niu J (2009) Norcantharidin induces HT-29 colon cancer cell apoptosis through the alphavbeta6-extracellular signal-related kinase signaling pathway. Cancer Sci 100(12):2302–2308

    Article  PubMed  CAS  Google Scholar 

  35. Bonness K, Aragon IV, Rutland B, Ofori-Acquah S, Dean NM, Honkanen RE (2006) Cantharidin-induced mitotic arrest is associated with the formation of aberrant mitotic spindles and lagging chromosomes resulting, in part, from the suppression of PP2A-alpha. Mol Cancer Ther 5(11):2727–2736

    Article  PubMed  CAS  Google Scholar 

  36. Yang J, Wu J, Tan C, Klein PS (2003) PP2A:B56epsilon is required for Wnt/beta-catenin signaling during embryonic development. Development 130(23):5569–5578

    Article  PubMed  CAS  Google Scholar 

  37. Li W, Xie L, Chen Z, Zhu Y, Sun Y, Miao Y, Xu Z, Han X (2010) Cantharidin, a potent and selective PP2A inhibitor, induces an oxidative stress-independent growth inhibition of pancreatic cancer cells through G2/M cell-cycle arrest and apoptosis. Cancer Sci 101(5):1226–1233

    Article  PubMed  CAS  Google Scholar 

  38. Sakoff JA, Ackland SP, Baldwin ML, Keane MA, McCluskey A (2002) Anticancer activity and protein phosphatase 1 and 2A inhibition of a new generation of cantharidin analogues. Invest New Drugs 20(1):1–11

    Article  PubMed  CAS  Google Scholar 

  39. Cimmino F, Schulte JH, Zollo M, Koster J, Versteeg R, Iolascon A, Eggert A, Schramm A (2009) Galectin-1 is a major effector of TrkB-mediated neuroblastoma aggressiveness. Oncogene 28(19):2015–2023

    Article  PubMed  CAS  Google Scholar 

  40. Garzia L, Andolfo I, Cusanelli E, Marino N, Petrosino G, De Martino D, Esposito V, Galeone A, Navas L, Esposito S, Gargiulo S, Fattet S, Donofrio V, Cinalli G, Brunetti A, Vecchio LD, Northcott PA, Delattre O, Taylor MD, Iolascon A, Zollo M (2009) MicroRNA-199b-5p impairs cancer stem cells through negative regulation of HES1 in medulloblastoma. PloS One 4(3):e4998

    Article  PubMed  Google Scholar 

  41. Yokota N, Mainprize TG, Taylor MD, Kohata T, Loreto M, Ueda S, Dura W, Grajkowska W, Kuo JS, Rutka JT (2004) Identification of differentially expressed and developmentally regulated genes in medulloblastoma using suppression subtraction hybridization. Oncogene 23(19):3444–3453

    Article  PubMed  CAS  Google Scholar 

  42. van Noort M, Meeldijk J, van der Zee R, Destree O, Clevers H (2002) Wnt signaling controls the phosphorylation status of beta-catenin. J Biol Chem 277(20):17901–17905

    Article  PubMed  Google Scholar 

  43. Massicot F, Dutertre-Catella H, Pham-Huy C, Liu XH, Duc HT, Warnet JM (2005) In vitro assessment of renal toxicity and inflammatory events of two protein phosphatase inhibitors cantharidin and nor-cantharidin. Basic Clin Pharmacol Toxicol 96(1):26–32

    Article  PubMed  CAS  Google Scholar 

  44. Barker N, Clevers H (2006) Mining the Wnt pathway for cancer therapeutics. Nat Rev Drug Discov 5(12):997–1014

    Article  PubMed  CAS  Google Scholar 

  45. Baryawno N, Sveinbjornsson B, Kogner P, Johnsen JI (2010) Medulloblastoma: a disease with disorganized developmental signaling cascades. Cell Cycle 9(13):2548–2554

    Article  PubMed  CAS  Google Scholar 

  46. Baryawno N, Sveinbjornsson B, Eksborg S, Chen CS, Kogner P, Johnsen JI (2010) Small-molecule inhibitors of phosphatidylinositol 3-kinase/Akt signaling inhibit Wnt/beta-catenin pathway cross-talk and suppress medulloblastoma growth. Cancer Res 70(1):266–276

    Article  PubMed  CAS  Google Scholar 

  47. Widau RC, Jin Y, Dixon SA, Wadzinski BE, Gallagher PJ (2010) Protein phosphatase 2A (PP2A) holoenzymes regulate death-associated protein kinase (DAPK) in ceramide-induced anoikis. J Biol Chem 285(18):13827–13838

    Article  PubMed  CAS  Google Scholar 

  48. Chen YJ, Shieh CJ, Tsai TH, Kuo CD, Ho LT, Liu TY, Liao HF (2005) Inhibitory effect of norcantharidin, a derivative compound from blister beetles, on tumor invasion and metastasis in CT26 colorectal adenocarcinoma cells. Anti-cancer drugs 16(3):293–299

    Article  PubMed  CAS  Google Scholar 

  49. Chen YN, Cheng CC, Chen JC, Tsauer W, Hsu SL (2003) Norcantharidin-induced apoptosis is via the extracellular signal-regulated kinase and c-Jun-NH2-terminal kinase signaling pathways in human hepatoma HepG2 cells. Br J Pharmacol 140(3):461–470

    Article  PubMed  CAS  Google Scholar 

  50. Yang H, Guo W, Xu B, Li M, Cui J (2007) Anticancer activity and mechanisms of norcantharidin-Nd3II on hepatoma. Anticancer Drugs 18(10):1133–1137

    Article  PubMed  CAS  Google Scholar 

  51. Chuang KA, Lieu CH, Tsai WJ, Wu MH, Chen YC, Liao JF, Wang CC, Kuo YC (2010) Evaluation of anti-Wnt/beta-catenin signaling agents by pGL4-TOP transfected stable cells with a luciferase reporter system. Braz J Med Biol Res 43(10):931–941

    Article  PubMed  CAS  Google Scholar 

  52. Pizem J, Cort A, Zadravec-Zaletel L, Popovic M (2005) Survivin is a negative prognostic marker in medulloblastoma. Neuropathol Appl Neurobiol 31(4):422–428

    Article  PubMed  CAS  Google Scholar 

  53. Mimeault M, Batra SK (2010) Frequent deregulations in the hedgehog signaling network and cross-talks with the epidermal growth factor receptor pathway involved in cancer progression and targeted therapies. Pharmacol Rev 62(3):497–524

    Article  PubMed  CAS  Google Scholar 

  54. Guo X, Wang XF (2009) Signaling cross-talk between TGF-beta/BMP and other pathways. Cell Res 19(1):71–88

    Article  PubMed  CAS  Google Scholar 

  55. Li C, Zhang Y, Lu Y, Cui Z, Yu M, Zhang S, Xue X (2010) Evidence of the cross talk between Wnt and Notch signaling pathways in non-small-cell lung cancer (NSCLC): Notch3-siRNA weakens the effect of LiCl on the cell cycle of NSCLC cell lines. J Cancer Res Clin Oncol 5:771–778

    Google Scholar 

  56. Orsulic S, Huber O, Aberle H, Arnold S, Kemler R (1999) E-cadherin binding prevents beta-catenin nuclear localization and beta-catenin/LEF-1-mediated transactivation. J Cell Sci 112(Pt 8):1237–1245

    PubMed  CAS  Google Scholar 

  57. Zhang L, Sun X, Zhang ZR (2005) An investigation on liver-targeting microemulsions of norcantharidin. Drug Deliv 12(5):289–295

    Article  PubMed  CAS  Google Scholar 

  58. Malaterre J, Ramsay RG, Mantamadiotis T (2007) Wnt-Frizzled signalling and the many paths to neural development and adult brain homeostasis. Front Biosci 12:492–506

    Article  PubMed  CAS  Google Scholar 

  59. Chenn A, Walsh CA (2002) Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science 297(5580):365–369

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by PRIN (E5AZ5F) 2008 (MZ), AIRC Tumori Pediatrici 2009–2010 (MZ), European GRANT FP6-EET pipeline LSH-CT-2006-037260 (MZ), and FP7-Tumic HEALTH-F2-2008-201662 (MZ). We thank Dr Hans Clevers (University Hospital, Utrecht, The Netherlands) for generously providing the TOPFLASH and FOPFLASH plasmids, and Dr Alexander Martinkosky and Dr Jill Johnson from the Developmental Therapeutics Program (DCTD), National Cancer Institute, Rockville, USA, and Professor Achille Iolascon from DBBM, University of Naples, Italy, for helpful critical observations during the developmental phase of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Zollo.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cimmino, F., Scoppettuolo, M.N., Carotenuto, M. et al. Norcantharidin impairs medulloblastoma growth by inhibition of Wnt/β-catenin signaling. J Neurooncol 106, 59–70 (2012). https://doi.org/10.1007/s11060-011-0645-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-011-0645-y

Keywords

Navigation