Skip to main content

Advertisement

Log in

Wnt activation affects proliferation, invasiveness and radiosensitivity in medulloblastoma

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Medulloblastomas (MBs) associated with the Wnt activation represent a subgroup with a favorable prognosis, but it remains unclear whether Wnt activation confers a less aggressive phenotype and/or enhances radiosensitivity. To investigate this issue, we evaluated the biological behavior of an MB cell line, UW228-1, stably transfected with human β-catenin cDNA encoding a nondegradable form of β-catenin (UW-B) in standard culture conditions and after radiation treatment. We evaluated the expression, transcriptional activity, and localization of β-catenin in the stably transfected cells using immunofluorescence and WB. We performed morphological analysis using light and electron microscopy. We then analyzed changes in the invasiveness, growth, and mortality in standard culture conditions and after radiation. We demonstrated that (A) Wnt activation inhibited 97 % of the invasion capability of the cells, (B) the growth of the UW-B cells was statistically significantly lower than that of all the other control cells (p < 0.01), (C) the mortality of irradiated UW-B cells was statistically significantly higher than that of the controls and their nonirradiated counterparts (p < 0.05), and (D) morphological features of neuronal differentiation were observed in the Wnt-activated cells. In tissue samples, the Ki-67 labeling index (LI) was lower in β-catenin-positive samples compared to non-β-catenin positive ones. The Ki-67 LI median (LI = 40) of the nuclear β-catenin-positive tumor samples was lower than that of non-nuclear β-catenin-positive samples (LI = 50), but the difference was not statistically significant. Overall, our data suggest that activation of the Wnt pathway reduces the proliferation and invasion of MBs and increases the tumor’s radiosensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Giangaspero F, Eberhart CG, Haapasalo H, Pietsch T, Wiestler OD, Ellison DW (2007) Medulloblastoma. In: Louis DN, Ohgaki H, Wiestler OD, Cavanee WK (eds) WHO classification of tumors of the central nervous system. IARC, Lyon, pp 132–140

    Google Scholar 

  2. Gilbertson RJ, Ellison DW (2008) The origins of medulloblastoma subtypes. Annu Rev Pathol 3:341–365

    Article  CAS  PubMed  Google Scholar 

  3. Gessi M, von Bueren AO, Rutkowski S, Pietsch T (2012) p53 expression predicts dismal outcome for medulloblastoma patients with metastatic disease. J Neurooncol 106:135–140

    Article  CAS  PubMed  Google Scholar 

  4. Gilbertson RJ (2004) Medulloblastoma: signalling a change in treatment. Lancet Oncol 5:209–218

    Article  PubMed  Google Scholar 

  5. Northcott PA, Korshunov A, Witt H, Hielscher T, Eberhart CG, Mack S, Bouffet E, Clifford SC, Hawkins CE, French P, Rutka JT, Pfister S, Taylor MD (2011) Medulloblastoma comprises four distinct molecular variants. J Clin Oncol 29:1408–1414

    Article  PubMed  Google Scholar 

  6. Pfister SM, Korshunov A, Kool M, Hasselblatt M, Eberhart C, Taylor MD (2010) Molecular diagnostics of CNS embryonal tumors. Acta Neuropathol 120:553–566

    Article  CAS  PubMed  Google Scholar 

  7. Eberhart CG (2011) Molecular diagnostics in embryonal brain tumors. Brain Pathol 21:96–104

    Article  PubMed Central  PubMed  Google Scholar 

  8. Gibson P, Tong Y, Robinson G, Thompson MC, Currle DS, Eden C, Kranenburg TA, Hogg T, Poppleton H, Martin J, Finkelstein D, Pounds S, Weiss A, Patay Z, Scoggins M, Ogg R, Pei Y, Yang ZJ, Brun S, Lee Y, Zindy F, Lindsey JC, Taketo MM, Boop FA, Sanford RA, Gajjar A, Clifford SC, Roussel MF, McKinnon PJ, Gutmann DH, Ellison DW, Wechsler-Reya R, Gilbertson RJ (2010) Subtypes of medulloblastoma have distinct developmental origins. Nature 468:1095–1099

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Ellison DW, Dalton J, Kocak M, Nicholson SL, Fraga C, Neale G, Kenney AM, Brat DJ, Perry A, Yong WH, Taylor RE, Bailey S, Clifford SC, Gilbertson RJ (2011) Medulloblastoma: clinicopathological correlates of SHH, WNT, and non-SHH/WNT molecular subgroups. Acta Neuropathol 121:381–396

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Kool M, Korshunov A, Remke M, Jones DT, Schlanstein M, Northcott PA, Cho YJ, Koster J, Schouten-van Meeteren A, van Vuurden D, Clifford SC, Pietsch T, von Bueren AO, Rutkowski S, McCabe M, Collins VP, Bäcklund ML, Haberler C, Bourdeaut F, Delattre O, Doz F, Ellison DW, Gilbertson RJ, Pomeroy SL, Taylor MD, Lichter P, Pfister SM (2012) Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas. Acta Neuropathol 123:473–484

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Ellison DW, Onilude OE, Lindsey JC, Lusher ME, Weston CL, Taylor RE, Pearson AD, Clifford SC, United Kingdom Children’s Cancer Study Group Brain Tumour Committee (2005) Beta-catenin status predicts a favorable outcome in childhood medulloblastoma: the United Kingdom Children’s Cancer Study Group Brain Tumor Committee. J Clin Oncol 23:7951–7957

    Article  CAS  PubMed  Google Scholar 

  12. Fattet S, Haberler C, Legoix P, Varlet P, Lellouch-Tubiana A, Lair S, Manie E, Raquin MA, Bours D, Carpentier S, Barillot E, Grill J, Doz F, Puget S, Janoueix-Lerosey I, Delattre O (2009) Beta-catenin status in pediatric medulloblastomas: correlation of immunohistochemical expression with mutational status, genetic profiles, and clinical characteristics. J Pathol 218:86–94

    Article  CAS  PubMed  Google Scholar 

  13. Thompson MC, Fuller C, Hogg TL, Dalton J, Finkelstein D, Lau CC, Chintagumpala M, Adesina A, Ashley DM, Kellie SJ, Taylor MD, Curran T, Gajjar A, Gilbertson RJ (2006) Genomics identifies medulloblastoma subgroups that are enriched for specific genetic alterations. J Clin Oncol 24:1924–1931

    Article  CAS  PubMed  Google Scholar 

  14. Cimmino F, Scoppettuolo MN, Carotenuto M, De Antonellis P, Dato VD, De Vita G, Zollo M (2012) Norcantharidin impairs medulloblastoma growth by inhibition of Wnt/b-catenin signaling. J Neurooncol 106:59–70

    Article  CAS  PubMed  Google Scholar 

  15. Clifford SC, Lusher ME, Lindsey JC, Langdon JA, Gilbertson RJ, Straughton D, Ellison DW (2006) Wnt/Wingless pathway activation and chromosome 6 loss characterize a distinct molecular sub-group of medulloblastomas associated with a favorable prognosis. Cell Cycle 5:2666–2670

    Article  CAS  PubMed  Google Scholar 

  16. Kool M, Koster J, Bunt J, Hasselt NE, Lakeman A, van Sluis P, Troost D, Meeteren NS, Caron HN, Cloos J, Mrsić A, Ylstra B, Grajkowska W, Hartmann W, Pietsch T, Ellison D, Clifford SC, Versteeg R (2008) Integrated genomics identifies five medulloblastoma subtypes with distinct genetic profiles, pathway signatures and clinicopathological features. PLoS One 3:e3088

    Article  PubMed Central  PubMed  Google Scholar 

  17. Rogers HA, Miller S, Lowe J, Brundler MA, Coyle B, Grundy RG (2009) An investigation of WNT pathway activation and association with survival in central nervous system primitive neuroectodermal tumours (CNS PNET). Br J Cancer 100:1292–1302

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Keles GE, Berger MS, Srinivasan J, Kolstoe DD, Bobola MS, Silber JR (1995) Establishment and characterization of four human medulloblastoma-derived cell lines. Oncol Res 7:493–503

    CAS  PubMed  Google Scholar 

  19. Derksen PW, Tjin E, Meijer HP, Klok MD, MacGillavry HD, van Oers MH, Lokhorst HM, Bloem AC, Clevers H, Nusse R, van der Neut R, Spaargaren M, Pals ST (2004) Illegitimate WNT signaling promotes proliferation of multiple myeloma cells. Proc Natl Acad Sci USA 101:6122–6127

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Salaroli R, Di Tomaso T, Ronchi A, Ceccarelli C, Cammelli S, Cappellini A, Martinelli GN, Barbieri E, Giangaspero F, Cenacchi G (2008) Radiobiologic response of medulloblastoma cell lines: involvement of beta-catenin? J Neurooncol 90:243–251

    Article  CAS  PubMed  Google Scholar 

  21. Albini A, Iwamoto Y, Kleinman HK et al (1987) A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res 47:3239–3245

    CAS  PubMed  Google Scholar 

  22. Gajjar A, Chintagumpala M, Ashley D, Kellie S, Kun LE, Merchant TE, Woo S, Wheeler G, Ahern V, Krasin MJ, Fouladi M, Broniscer A, Krance R, Hale GA, Stewart CF, Dauser R, Sanford RA, Fuller C, Lau C, Boyett JM, Wallace D, Gilbertson RJ (2006) Risk-adapted craniospinal radiotherapy followed by high-dose chemotherapy and stem-cell rescue in children with newly diagnosed medulloblastoma (St Jude Medulloblastoma-96): long-term results from a prospective, multicentre trial. Lancet Oncol 7:813–820

    Article  PubMed  Google Scholar 

  23. Peifer M, Polakis P (2000) Wnt signaling in oncogenesis and embryogenesis—a look outside the nucleus. Science 2000:1606–1609

    Article  Google Scholar 

  24. Polakis P (2000) Wnt signaling and cancer. Genes Dev 14:1837–1851

    CAS  PubMed  Google Scholar 

  25. Clevers H (2006) Wnt/beta-catenin signalling in development and disease. Cell 127:469–480

    Article  CAS  PubMed  Google Scholar 

  26. Nager M, Bhardwaj D, Cantì C, Medina L, Nogués P, Herreros J (2012) β-catenin signalling in glioblastoma multiforme and glioma-initiating cells. Chemother Res Pract 2012:192362

    PubMed Central  PubMed  Google Scholar 

  27. Momota H, Shih AH, Edgar MA, Holland EC (2008) c-Myc and beta-catenin cooperate with loss of p53 to generate multiple members of the primitive neuroectodermal tumor family in mice. Oncogene 27:4392–4401

    Article  CAS  PubMed  Google Scholar 

  28. Zhao X, Liu Z, Yu L, Zhang Y, Baxter P, Voicu H, Gurusiddappa S, Luan J, Su JM, Leung HC, Li XN (2012) Global gene expression profiling confirms the molecular fidelity of primary tumor-based orthotopic xenograft mouse models of medulloblastoma. Neuro Oncol 14:574–583

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Lucero OM, Dawson DW, Moon RT, Chien AJ (2010) A re-evaluation of the “oncogenic” nature of Wnt/beta-catenin signaling in melanoma and other cancers. Curr Oncol Rep 12:314–318

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Pöschl J, Grammel D, Dorostkar MM, Batash R, Pöschl J, Schaffer PM (2013) Constitutive activation of beta-catenin in neural progenitors results in disrupted proliferation and migration of neurons within the central nervous system. Dev Biol 374:319–332

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Mike Bobola and Dr. Charles G. Eberhart for providing the human MB cell line UW228-1 and Dr. Hans Clevers for providing the plasmid construct.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanna Cenacchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salaroli, R., Ronchi, A., Buttarelli, F.R. et al. Wnt activation affects proliferation, invasiveness and radiosensitivity in medulloblastoma. J Neurooncol 121, 119–127 (2015). https://doi.org/10.1007/s11060-014-1621-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-014-1621-0

Keywords

Navigation