Skip to main content
Log in

Novel Insights into the Pathomechanisms of Skeletal Muscle Channelopathies

  • Nerve and Muscle (M Hirano and LH Weimer, Section Editors)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

The nondystrophic myotonias and primary periodic paralyses are an important group of genetic muscle diseases characterized by dysfunction of ion channels that regulate membrane excitability. Clinical manifestations vary and include myotonia, hyperkalemic and hypokalemic periodic paralysis, progressive myopathy, and cardiac arrhythmias. The severity of myotonia ranges from severe neonatal presentation causing respiratory compromise through to mild later-onset disease. It remains unclear why the frequency of attacks of paralysis varies greatly or why many patients develop a severe permanent fixed myopathy. Recent detailed characterizations of human genetic mutations in voltage-gated muscle sodium (gene: SCN4A), chloride (gene: CLCN1), calcium (gene: CACNA1S), and inward rectifier potassium (genes: KCNJ2, KCNJ18) channels have resulted in new insights into disease mechanisms, clinical phenotypic variation, and therapeutic options

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Freygang Jr WH. Goldstein DA, Hellam DC: The after-Potential That Follows Trains of Impulses in Frog Muscle Fibers. J Gen Physiol. 1964;47:929–52.

    Article  PubMed  Google Scholar 

  2. Adrian RH, Bryant SH. On the repetitive discharge in myotonic muscle fibres. J Physiol. 1974;240(2):505–15.

    PubMed  CAS  Google Scholar 

  3. Jurkat-Rott K, Holzherr B, Fauler M, Lehmann-Horn F. Sodium channelopathies of skeletal muscle result from gain or loss of function. Pflugers Arch. 2010;460(2):239–48.

    Article  PubMed  CAS  Google Scholar 

  4. Clausen T, Nielsen OB, Clausen JD, et al. Na, K-pump stimulation improves contractility in isolated muscles of mice with hyperkalaemic periodic paralysis. J Gen Physiol. 2011;138(1):117–30.

    Article  PubMed  CAS  Google Scholar 

  5. Raja Rayan DL, Hanna MG. Skeletal muscle channelopathies: nondystrophic myotonias and periodic paralysis. Curr Opin Neurol. 2010;23(5):466–76.

    Article  PubMed  CAS  Google Scholar 

  6. •• Jurkat-Rott K, Weber MA, Fauler M, et al.: K+−dependent paradoxical membrane depolarization and Na+ overload, major and reversible contributors to weakness by ion channel leaks. Proc Natl Acad Sci U S A 2009, 106(10):4036–4041. This article shows that although it has not been possible to record the gating pore current from heterologously expressed Ca v 1.1, muscle fibers from patients with HypoPP 1 exhibit an inward leak compatible with gating pore current. By recording from many muscle cells a bimodal distribution of resting potential was demonstrated.

    Article  PubMed  CAS  Google Scholar 

  7. • Matthews E, Labrum R, Sweeney MG, et al.: Voltage sensor charge loss accounts for most cases of hypokalemic periodic paralysis. Neurology 2009, 72(18):1544–1547. This article provides strong genetic support for the idea that the gating pore current is the critical abnormality in HypoPP.

    Article  PubMed  CAS  Google Scholar 

  8. Striessnig J, Bolz HJ, Koschak A. Channelopathies in Cav1.1, Cav1.3, and Cav1.4 voltage-gated L-type Ca2+ channels. Pflugers Arch. 2010;460(2):361–74.

    Article  PubMed  CAS  Google Scholar 

  9. Geukes Foppen RJ, van Mil HG, van Heukelom JS. Effects of chloride transport on bistable behaviour of the membrane potential in mouse skeletal muscle. J Physiol. 2002;542(Pt 1):181–91.

    Article  PubMed  CAS  Google Scholar 

  10. Struyk AF, Cannon SC. Paradoxical depolarization of BA2 + − treated muscle exposed to low extracellular K+: insights into resting potential abnormalities in hypokalemic paralysis. Muscle Nerve. 2008;37(3):326–37.

    Article  PubMed  CAS  Google Scholar 

  11. Lion-Francois L, Mignot C, Vicart S, et al. Severe neonatal episodic laryngospasm due to de novo SCN4A mutations: a new treatable disorder. Neurology. 2010;75(7):641–5.

    Article  PubMed  CAS  Google Scholar 

  12. Matthews E, Manzur AY, Sud R, et al. Stridor as a neonatal presentation of skeletal muscle sodium channelopathy. Arch Neurol. 2011;68:127–9.

    Article  PubMed  Google Scholar 

  13. Simkin D, Lena I, Landrieu P, et al.: Mechanisms underlying a life-threatening skeletal muscle Na + channel disorder. J Physiol 2011, in press.

  14. Kubota T, Roca X, Kimura T, et al.: A mutation in a rare type of intron in a sodium-channel gene results in aberrant splicing and causes myotonia. Hum Mutat 2011.

  15. • Jarecki BW, Piekarz AD, Jackson JO 2nd, Cummins TR: Human voltage-gated sodium channel mutations that cause inherited neuronal and muscle channelopathies increase resurgent sodium currents. J Clin Invest 2010, 120(1):369–378. This article suggests an interesting new mechanism through which sodium channel myotonia might arise, although the hypothesis remains to be tested empirically in skeletal muscle tissue.

    Article  PubMed  CAS  Google Scholar 

  16. Cannon SC, Bean BP. Sodium channels gone wild: resurgent current from neuronal and muscle channelopathies. J Clin Invest. 2010;120(1):80–3.

    Article  PubMed  CAS  Google Scholar 

  17. Arzel-Hezode M, Sternberg D, Tabti N, et al. Homozygosity for dominant mutations increases severity of muscle channelopathies. Muscle Nerve. 2010;41(4):470–7.

    Article  PubMed  CAS  Google Scholar 

  18. Zlotogora J. Dominance and homozygosity. Am J Med Genet. 1997;68(4):412–6.

    Article  PubMed  CAS  Google Scholar 

  19. Wilkie AO. The molecular basis of genetic dominance. J Med Genet. 1994;31(2):89–98.

    Article  PubMed  CAS  Google Scholar 

  20. • Francis DG, Rybalchenko V, Struyk A, Cannon SC: Leaky sodium channels from voltage sensor mutations in periodic paralysis, but not paramyotonia. Neurology 2011, 76: 1635–1641. Not all voltage sensor mutations cause HypoPP. The finding that a voltage sensor mutation not associated with HypoPP does not produce a gating pore current lends support to the idea that gating pore current is critical to the pathogenesis of HypoPP.

    Article  PubMed  CAS  Google Scholar 

  21. Ruff RL. Voltage sensor charge loss accounts for most cases of hypokalemic periodic paralysis. Neurology. 2010;74(3):269. author reply 169–70.

    Article  PubMed  Google Scholar 

  22. • Puwanant A, Ruff RL: INa and IKir are reduced in Type 1 hypokalemic and thyrotoxic periodic paralysis. Muscle Nerve 2010, 42(3):315–327. This article makes the important point that HypoPP 1 muscle has more biophysical abnormalities than the gating pore current, and that these may contribute to the phenotype.

    Article  PubMed  CAS  Google Scholar 

  23. Tristani-Firouzi M, Etheridge SP. Kir 2.1 channelopathies: the Andersen-Tawil syndrome. Pflugers Arch. 2010;460(2):289–94.

    Article  PubMed  CAS  Google Scholar 

  24. Chan HF, Chen ML, Su JJ, et al. A novel neuropsychiatric phenotype of KCNJ2 mutation in one Taiwanese family with Andersen-Tawil syndrome. J Hum Genet. 2010;55(3):186–8.

    Article  PubMed  Google Scholar 

  25. Lim BC, Kim GB, Bae EJ, et al. Andersen cardiodysrhythmic periodic paralysis with KCNJ2 mutations: a novel mutation in the pore selectivity filter residue. J Child Neurol. 2010;25(4):490–3.

    Article  PubMed  Google Scholar 

  26. Barajas-Martinez H, Hu D, Ontiveros G, et al. Biophysical and molecular characterization of a novel de novo KCNJ2 mutation associated with Andersen-Tawil syndrome and catecholaminergic polymorphic ventricular tachycardia mimicry. Circ Cardiovasc Genet. 2011;4(1):51–7.

    Article  PubMed  CAS  Google Scholar 

  27. Kim JB, Chung KW. Novel de novo mutation in the KCNJ2 gene in a patient with Andersen-Tawil syndrome. Pediatr Neurol. 2009;41(6):464–6.

    Article  PubMed  Google Scholar 

  28. Doi T, Makiyama T, Morimoto T, et al. A Novel KCNJ2 Nonsense Mutation, S369X, Impedes Trafficking and Causes a Limited Form of Andersen-Tawil Syndrome. Circ Cardiovasc Genet. 2011;4:253–60.

    Article  PubMed  CAS  Google Scholar 

  29. •• Ryan DP, da Silva MR, Soong TW, et al.: Mutations in potassium channel Kir2.6 cause susceptibility to thyrotoxic hypokalemic periodic paralysis. Cell 2010, 140(1):88–98. This important paper identified the Kir2.6 potassium channel and showed that mutations are associated with thyrotoxic periodic paralysis.

    Article  PubMed  CAS  Google Scholar 

  30. Dassau L, Conti LR, Radeke CM, et al. Kir2.6 regulates the surface expression of Kir2.x inward rectifier potassium channels. J Biol Chem. 2011;286:9526–41.

    Article  PubMed  CAS  Google Scholar 

  31. Cheng CJ, Lin SH, Lo YF, et al.: Identification and Functional Characterization of Kir2.6 Mutations Associated with Non-familial Hypokalemic Periodic Paralysis. JBC 2011, in press.

  32. Klocke R, Steinmeyer K, Jentsch T, Jockusch H. Role of innervation, excitability and myogenic factors in the expression of the muscular chloride channel ClC-1. J Biol Chem. 1994;269(44):27635–9.

    PubMed  CAS  Google Scholar 

  33. van Lunteren E, Spiegler SE, Moyer M. Fatigue-inducing stimulation resolves myotonia in a drug-induced model. BMC Physiol. 2011;11:5.

    Article  PubMed  Google Scholar 

  34. DiFranco M, Herrera A, Vergara JL. Chloride currents from the transverse tubular system in adult mammalian skeletal muscle fibers. J Gen Physiol. 2010;137:21–41.

    Article  PubMed  Google Scholar 

  35. Lueck JD, Rossi AE, Thornton CA, et al. Sarcolemmal-restricted localization of functional ClC-1 channels in mouse skeletal muscle. J Gen Physiol. 2010;136(6):597–613.

    Article  PubMed  CAS  Google Scholar 

  36. Fahlke C. Chloride channels take center stage in a muscular drama. J Gen Physiol. 2010;137(1):17–9.

    Article  PubMed  Google Scholar 

  37. Zifarelli G, Pusch M. Relaxing messages from the sarcolemma. J Gen Physiol. 2010;136(6):593–6.

    Article  PubMed  CAS  Google Scholar 

  38. Woods CE, Novo D, DiFranco M, et al. Propagation in the transverse tubular system and voltage dependence of calcium release in normal and mdx mouse muscle fibres. J Physiol. 2005;568(Pt 3):867–80.

    Article  PubMed  CAS  Google Scholar 

  39. DiFranco M, Capote J, Vergara JL. Optical imaging and functional characterization of the transverse tubular system of mammalian muscle fibers using the potentiometric indicator di-8-ANEPPS. J Membr Biol. 2005;208(2):141–53.

    Article  PubMed  CAS  Google Scholar 

  40. Colding-Jorgensen E. Phenotypic variability in myotonia congenita. Muscle Nerve. 2005;32:19–34.

    Article  PubMed  CAS  Google Scholar 

  41. Duffield M, Rychkov G, Bretag A, Roberts M. Involvement of helices at the dimer interface in ClC-1 common gating. J Gen Physiol. 2003;121(2):149–61.

    Article  PubMed  CAS  Google Scholar 

  42. Cannon S. Pathomechanisms in channelopathies of skeletal muscle and brain. Annu Rev Neurosci. 2006;29:387–415.

    Article  PubMed  CAS  Google Scholar 

  43. Tsujino A, Kaibara M, Hayashi H, et al. A CLCN1 mutation in dominant myotonia congenita impairs the increment of chloride conductance during repetitive depolarization. Neurosci Lett. 2011;494(2):155–60.

    Article  PubMed  CAS  Google Scholar 

  44. Muniz VP, Senkevics AS, Zilbersztajn D, et al. Genetic variability in the myostatin gene does not explain the muscle hypertrophy and clinical penetrance in myotonia congenita. Muscle Nerve. 2010;41(3):427–8.

    Article  PubMed  Google Scholar 

  45. Sun C, Van Ghelue M, Tranebjaerg L, et al.: Myotonia congenita and myotonic dystrophy in the same family: coexistence of a CLCN1 mutation and expansion in the CNBP (ZNF9) gene. Clin Genet 2011, in press.

  46. Suominen T, Schoser B, Raheem O, et al. High frequency of co-segregating CLCN1 mutations among myotonic dystrophy type 2 patients from Finland and Germany. J Neurol. 2008;255(11):1731–6.

    Article  PubMed  CAS  Google Scholar 

  47. Pedersen TH, Macdonald WA, de Paoli FV, et al. Comparison of regulated passive membrane conductance in action potential-firing fast- and slow-twitch muscle. J Gen Physiol. 2009;134(4):323–37.

    Article  PubMed  CAS  Google Scholar 

  48. Pedersen TH, de Paoli FV, Flatman JA, et al. Regulation of ClC-1 and KATP channels in action potential-firing fast-twitch muscle fibers. J Gen Physiol. 2009;134(4):309–22.

    Article  PubMed  CAS  Google Scholar 

  49. Tricarico D, Conte Camerino D: Recent advances in the pathogenesis and drug action in periodic paralyses and related channelopathies. Front Pharmacol 2011, in press.

  50. • Sokolov S, Scheuer T, Catterall WA: Ion permeation and block of the gating pore in the voltage sensor of NaV1.4 channels with hypokalemic periodic paralysis mutations. J Gen Physiol 2010, 136(2):225–236. This article suggests that guanidine-based drugs acting as gating pore blockers could be useful therapies for HypoPP.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are members of The Consortium for Clinical Investigation of Neurologic Channelopathies (CINCH) funded by the National Institute of Health (http://rarediseasesnetwork.epi.usf.edu/cinch). Work at the MRC Centre for Neuromuscular Diseases is also supported by the Brain Research Trust, a Medical Research Council Centre grant, the National Centre for Research Resources, and the National Specialist Commissioning Agency (NCG) DoH-UK. University College London Hospitals/University College London receives a proportion of funding from the Department of Health’s National Institute for Health Research Biomedical Research Centres’ funding scheme.

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael G. Hanna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burge, J.A., Hanna, M.G. Novel Insights into the Pathomechanisms of Skeletal Muscle Channelopathies. Curr Neurol Neurosci Rep 12, 62–69 (2012). https://doi.org/10.1007/s11910-011-0238-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-011-0238-3

Keywords

Navigation