Skip to main content

Advertisement

Log in

High frequency of co-segregating CLCN1 mutations among myotonic dystrophy type 2 patients from Finland and Germany

  • ORIGINAL COMMUNICATION
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Based on previous reports the frequency of co-segregating recessive chloride channel (CLCN1) mutations in families with myotonic dystrophy type 2 (DM2) was suspected to be increased. We have studied the frequency of CLCN1 mutations in two separate patient and control cohorts from Germany and Finland, and for comparison in a German myotonic dystrophy type 1 (DM1) patient cohort. The frequency of heterozygous recessive chloride channel (CLCN1) mutations is disproportionally higher (5 %) in currently diagnosed DM2 patients compared to 1.6 % in the control population (p = 0.037), while the frequency in DM1 patients was the same as in the controls. Because the two genes segregate independently, the prevalence of CLCN1 mutations in the total DM2 patient population is, by definition, the same as in the control population. Our findings are, however, not based on the total DM2 population but on the currently diagnosed DM2 patients and indicate a selection bias in molecular diagnostic referrals. DM2 patients with co-segregating CLCN1 mutation have an increased likelihood to be referred for molecular diagnostic testing compared to DM2 patients without co-segregating CLCN1 mutation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bachinski LL, Udd B, Meola G, Sansone V, Bassez G, Eymard B, Thornton CA, Moxley RT, Harper PS, Rogers MT, Jurkat-Rott K, Lehmann-Horn F, Wieser T, Gamez J, Navarro C, Bottani A, Kohler A, Shriver MD, Sallinen R, Wessman M, Zhang S, Wright FA, Krahe R (2003) Confirmation of the type 2 myotonic dystrophy (CCTG)n expansion mutation in patients with proximal myotonic myopathy/proximal myotonic dystrophy of different European origins: a single shared haplotype indicates an ancestral founder effect. Am J Hum Genet 73:835–848

    Article  CAS  PubMed  Google Scholar 

  2. Baumann P, Myllyla VV, Leisti J (1998) Myotonia congenita in northern Finland: an epidemiological and genetic study. J Med Genet 35:293–296

    Article  CAS  PubMed  Google Scholar 

  3. Brook JD, McCurrach ME, Harley HG, Buckler AJ, Church D, Aburatani H, Hunter K, Stanton VP, Thirion JP, Hudson T, et al. (1992) Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3’ end of a transcript encoding a protein kinase family member. Cell 68:799–808

    Article  CAS  PubMed  Google Scholar 

  4. Charlet BN, Savkur RS, Singh G, Philips AV, Grice EA, Cooper TA (2002) Loss of the muscle-specific chloride channel in type 1 myotonic dystrophy due to misregulated alternative splicing. Mol Cell 10:45–53

    Article  Google Scholar 

  5. Cho DH, Tapscott SJ (2007) Myotonic dystrophy: emerging mechanisms for DM1 and DM2. Biochimica et biophysica acta 1772:195–204

    CAS  PubMed  Google Scholar 

  6. Day JW, Ricker K, Jacobsen JF, Rasmussen LJ, Dick KA, Kress W, Schneider C, Koch MC, Beilman GJ, Harrison AR, Dalton JC, Ranum LP (2003) Myotonic dystrophy type 2: molecular, diagnostic and clinical spectrum. Neurology 60:657–664

    Article  CAS  PubMed  Google Scholar 

  7. Deymeer F, Lehmann-Horn F, Serdaroglu P, Cakirkaya S, Benz S, Rudel R, Ozdemir C (1999) Electrical myotonia in heterozygous carriers of recessive myotonia congenita. Muscle Nerve 22:123–125

    Article  CAS  PubMed  Google Scholar 

  8. Duno M, Colding-Jorgensen E, Grunnet M, Jespersen T, Vissing J, Schwartz M (2004) Difference in allelic expression of the CLCN1 gene and the possible influence on the myotonia congenita phenotype. Eur J Hum Genet 12:738–743

    Article  CAS  PubMed  Google Scholar 

  9. Fu YH, Pizzuti A, Fenwick RG Jr, King J, Rajnarayan S, Dunne PW, Dubel J, Nasser GA, Ashizawa T, de Jong P, et al. (1992) An unstable triplet repeat in a gene related to myotonic muscular dystrophy. Science (New York, NY) 255:1256–1258

    CAS  Google Scholar 

  10. George AL Jr, Crackower MA, Abdalla JA, Hudson AJ, Ebers GC (1993) Molecular basis of Thomsen’s disease (autosomal dominant myotonia congenita). Nat Genet 3:305–310

    Article  CAS  PubMed  Google Scholar 

  11. Kimura T, Nakamori M, Lueck JD, Pouliquin P, Aoike F, Fujimura H, Dirksen RT, Takahashi MP, Dulhunty AF, Sakoda S (2005) Altered mRNA splicing of the skeletal muscle ryanodine receptor and sarcoplasmic/endoplasmic reticulum Ca2+-ATPase in myotonic dystrophy type 1. Hum Mol Genet 14:2189–2200

    Article  CAS  PubMed  Google Scholar 

  12. Koch MC, Steinmeyer K, Lorenz C, Ricker K, Wolf F, Otto M, Zoll B, Lehmann-Horn F, Grzeschik KH, Jentsch TJ (1992) The skeletal muscle chloride channel in dominant and recessive human myotonia. Science (New York, NY) 257:797–800

    CAS  Google Scholar 

  13. Lamont PJ, Jacob RL, Mastaglia FL, Laing NG (2004) An expansion in the ZNF9 gene causes PROMM in a previously described family with an incidental CLCN1 mutation. J Neurol Neurosurg Psychiatry 75:343

    Article  CAS  PubMed  Google Scholar 

  14. Lin X, Miller JW, Mankodi A, Kanadia RN, Yuan Y, Moxley RT, Swanson MS, Thornton CA (2006) Failure of MBNL1-dependent post-natal splicing transitions in myotonic dystrophy. Hum Mol Genet 15:2087–2097

    Article  CAS  PubMed  Google Scholar 

  15. Liquori CL, Ricker K, Moseley ML, Jacobsen JF, Kress W, Naylor SL, Day JW, Ranum LP (2001) Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9. Science (New York, NY) 293:864–867

    CAS  Google Scholar 

  16. Mahadevan M, Tsilfidis C, Sabourin L, Shutler G, Amemiya C, Jansen G, Neville C, Narang M, Barcelo J, O’Hoy K, et al. (1992) Myotonic dystrophy mutation: an unstable CTG repeat in the 3’ untranslated region of the gene. Science (New York, NY) 255:1253–1255

    CAS  Google Scholar 

  17. Mahadevan MS, Yadava RS, Yu Q, Balijepalli S, Frenzel-McCardell CD, Bourne TD, Phillips LH (2006) Reversible model of RNA toxicity and cardiac conduction defects in myotonic dystrophy. Nat Genet 38:1066–1070

    Article  CAS  PubMed  Google Scholar 

  18. Mankodi A, Takahashi MP, Jiang H, Beck CL, Bowers WJ, Moxley RT, Cannon SC, Thornton CA (2002) Expanded CUG repeats trigger aberrant splicing of ClC-1 chloride channel premRNA and hyperexcitability of skeletal muscle in myotonic dystrophy. Mol Cell 10:35–44

    Article  CAS  PubMed  Google Scholar 

  19. Maurage CA, Udd B, Ruchoux MM, Vermersch P, Kalimo H, Krahe R, Delacourte A, Sergeant N (2005) Similar brain tau pathology in DM2/ PROMM and DM1/Steinert disease. Neurology 65:1636–1638

    Article  CAS  PubMed  Google Scholar 

  20. Moxley RT 3rd, Meola G, Udd B, Ricker K (2002) Report of the 84th ENMC workshop: PROMM (proximal myotonic myopathy) and other myotonic dystrophy-like syndromes: 2nd workshop. 13–15th October, 2000, Loosdrecht, The Netherlands. Neuromuscul Disord 12:306–317

    Article  PubMed  Google Scholar 

  21. Papponen H, Toppinen T, Baumann P, Myllyla V, Leisti J, Kuivaniemi H, Tromp G, Myllyla R (1999) Founder mutations and the high prevalence of myotonia congenita in northern Finland. Neurology 53:297–302

    CAS  PubMed  Google Scholar 

  22. Philips AV, Timchenko LT, Cooper TA (1998) Disruption of splicing regulated by a CUG-binding protein in myotonic dystrophy. Science (New York, NY) 280:737–741

    CAS  Google Scholar 

  23. Ranum LP, Day JW (2004) Myotonic dystrophy: RNA pathogenesis comes into focus. Am J Hum Genet 74:793–804

    Article  CAS  PubMed  Google Scholar 

  24. Savkur RS, Philips AV, Cooper TA, Dalton JC, Moseley ML, Ranum LP, Day JW (2004) Insulin receptor splicing alteration in myotonic dystrophy type 2. Am J Hum Genet 74:1309–1313

    Article  CAS  PubMed  Google Scholar 

  25. Sun C, Tranebjaerg L, Torbergsen T, Holmgren G, Van Ghelue M (2001) Spectrum of CLCN1 mutations in patients with myotonia congenita in Northern Scandinavia. Eur J Hum Genet 9:903–909

    Article  CAS  PubMed  Google Scholar 

  26. Udd B, Krahe R, Wallgren-Pettersson C, Falck B, Kalimo H (1997) Proximal myotonic dystrophy – a family with autosomal dominant muscular dystrophy, cataracts, hearing loss and hypogonadism: heterogeneity of proximal myotonic syndromes? Neuromuscul Disord 7:217–228

    Article  CAS  PubMed  Google Scholar 

  27. Udd B, Meola G, Krahe R, Thornton C, Ranum L, Day J, Bassez G, Ricker K (2003) Report of the 115th ENMC workshop: DM2/PROMM and other myotonic dystrophies. 3rd Workshop, 14–16 February 2003, Naarden, The Netherlands. Neuromuscul Disord 13:589–596

    Article  CAS  PubMed  Google Scholar 

  28. Udd B, Meola G, Krahe R, Thornton C, Ranum LP, Bassez G, Kress W, Schoser B, Moxley R (2006) 140th ENMC International Workshop: Myotonic Dystrophy DM2/PROMM and other myotonic dystrophies with guidelines on management. Neuromuscul Disord 16:403–413

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Udd M.D., Ph.D..

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suominen, T., Schoser, B., Raheem, O. et al. High frequency of co-segregating CLCN1 mutations among myotonic dystrophy type 2 patients from Finland and Germany. J Neurol 255, 1731–1736 (2008). https://doi.org/10.1007/s00415-008-0010-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-008-0010-z

Key words

Navigation