Skip to main content
Log in

Optical Imaging and Functional Characterization of the Transverse Tubular System of Mammalian Muscle Fibers using the Potentiometric Indicator di-8-ANEPPS

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Potentiometric dyes are useful tools for studying membrane potential changes from compartments inaccessible to direct electrical recordings. In the past, we have combined electrophysiological and optical techniques to investigate, by using absorbance and fluorescence potentiometric dyes, the electrical properties of the transverse tubular system in amphibian skeletal muscle fibers. In this paper we expand on recent observations using the fluorescent potentiometric indicator di-8-ANEPPS to investigate structural and functional properties of the transverse tubular system in mammalian skeletal muscle fibers. Two-photon laser scanning confocal fluorescence images of live muscle fibers suggest that the distance between consecutive rows of transverse tubules flanking the Z-lines remains relatively constant in muscle fibers stretched to attain sarcomere lengths of up to 3.5 μm. Furthermore, the combined use of two-microelectrode electrophysiological techniques with microscopic fluorescence spectroscopy and imaging allowed us to compare the spectral properties of di-8-ANEPPS fluorescence in fibers at rest, with those of fluorescence transients recorded in stimulated fibers. We found that although the indicator has excitation and emission peaks at 470 and 588 nm, respectively, fluorescence transients display optimal fractional changes (13%/100 mV) when using filters to select excitation wavelengths in the 530–550 nm band and emissions beyond 590 nm. Under these conditions, results from tetanically stimulated fibers and from voltage-clamp experiments suggest strongly that, although the kinetics of di-8-ANEPPS transients in mammalian fibers are very rapid and approximate those of the surface membrane electrical recordings, they arise from the transverse tubular system membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Adrian R.H., Costantin L.L., Peachey L.D. 1969. Radial spread of contraction in frog muscle fibres. J. Physiol. 204:231–257

    CAS  PubMed  Google Scholar 

  • Adrian R.H., Peachey L.D. 1973. Reconstruction of the action potential of frog sartorius muscle. J. Physiol. 235:103–131

    CAS  PubMed  Google Scholar 

  • Armstrong, C.M., Chow, R.H., 1987. Supercharging a method for improving patch clamp performance. Biophys J. 52: 133–136

    CAS  PubMed  Google Scholar 

  • Ashcroft F.M., Heiny J.A., Vergara J. 1985. Inward rectification in the transverse tubular system of frog skeletal muscle studied with potentiometric dyes. J. Physiol. 359:269–291

    CAS  PubMed  Google Scholar 

  • Bastian J., Nakajima S. 1974. Action potential in the transverse tubules and its role in the activation of skeletal muscle. J. Gen. Physiol. 63:257–278

    Article  CAS  PubMed  Google Scholar 

  • Bedlack R.S. Jr., Wei M., Loew L.M. 1992. Localized membrane depolarizations and localized calcium influx during electric field-guided neurite growth. Neuron 9:393–403

    Article  CAS  PubMed  Google Scholar 

  • Bezanilla F., Caputo C., Gonzalez-Serratos H., Venosa R.A. 1972. Sodium dependence of the inward spread of activation in isolated twitch muscle fibres of the frog. J. Physiol. 223:507–523

    CAS  PubMed  Google Scholar 

  • Cairns S.P., Buller S.J., Loiselle D.S., Renaud J.M. 2003. Changes of action potentials and force at lowered [Na+]o in mouse skeletal muscle: implications for fatigue. Am. J. Physiol. 285:C1131–C1141

    CAS  Google Scholar 

  • Cairns S.P., Ruzhynsky V., Renaud J.M. 2004. Protective role of extracellular chloride in fatigue of isolated mammalian skeletal muscle. Am. J. Physiol. 287:C762–C770

    Article  CAS  Google Scholar 

  • Cannon S.C., Brown R.H. Jr., Corey D.P. 1991. A sodium channel defect in hyperkalemic periodic paralysis: potassium-induced failure of inactivation. Neuron 6:619–626

    Article  CAS  PubMed  Google Scholar 

  • Cohen L.B., Salzberg B.M., Davila H.V., Ross W.N., Landowne D., Waggoner A.S., Wang C.H. 1974. Changes in axon fluorescence during activity: molecular probes of membrane potential. J. Membrane Biol. 19:l–36

    Article  Google Scholar 

  • DiFranco M., Quinonez M., DiGregorio D.A., Kim A.M., Pacheco R., Vergara J.L. 1999. Inverted double-gap isolation chamber for high-resolution calcium fluorimetry in skeletal muscle fibers. Pfluegers Arch. 438:412–418

    Article  CAS  Google Scholar 

  • DiFranco M., Woods C.E., Novo D., Vergara J.L. 2003. Intrasarcomeric calcium release domains in enzymatically dissociated mouse skeletal muscle fibers. Biophys. J. 82:641a

    Google Scholar 

  • Dulhunty A.F. 1989. Feet, bridges, and pillars in triad junctions of mammalian skeletal muscle: their possible relationship to calcium buffers in terminal cisternae and T-tubules and to excitation-contraction coupling. J. Membrane. Biol. 109:73–83

    Article  CAS  Google Scholar 

  • Eisenberg B.R. 1983. Chapter 3: Quantitative ultrastructure of mammalian skeletal muscle. In: L.D. Peachey, editor, Handbook of Physiology. pp. 73–112. American Physiological Society, Bethesda, MD

    Google Scholar 

  • Fisher J.A., Salzberg B.M., Yodh A.G. 2005. Near infrared two-photon excitation cross-sections of voltage-sensitive dyes. J. Neurosci. Methods 148:94–102

    Article  CAS  PubMed  Google Scholar 

  • Franzini-Armstrong C., Ferguson D.G., Champ C. 1988. Discrimination between fast- and slow-twitch fibres of guinea pig skeletal muscle using the relative surface density of junctional transverse tubule membrane. J. Muscle Res. Cell Motil. 9:403–414

    Article  CAS  PubMed  Google Scholar 

  • Franzini-Armstrong C., Protasi F., Ramesh V. 1998. Comparative ultrastructure of Ca2+ release units in skeletal and cardiac muscle. Ann. N. Acad. Sci. 853:20–30

    Article  CAS  Google Scholar 

  • Fromherz P., Lambacher A. 1991. Spectra of voltage-sensitive fluorescence of styryl-dye in neuron membrane. Biochim. Biophys. Acta 1068:149–156

    CAS  PubMed  Google Scholar 

  • Gonzalez-Serratos H. 1971. Inward spread of activation in vertebrate muscle fibres. J. Physiol. 212:771–799

    Google Scholar 

  • Gross E., Bedlack R.S. Jr., Loew L.M. 1994. Dual-wavelength ratiometric fluorescence measurement of the membrane dipole potential. Biophys. J. 67:208–216

    CAS  PubMed  Google Scholar 

  • Head S.I. 1993. Membrane potential, resting calcium and calcium transients in isolated muscle fibres from normal and dystrophic mice. J. Physiol. 469:11–19

    CAS  PubMed  Google Scholar 

  • Heiny J.A., Ashcroft P.M., Vergara J. 1983. T-system optical signals associated with inward rectification in skeletal muscle. Nature 301:164–166

    Article  CAS  PubMed  Google Scholar 

  • Heiny J.A., Vergara J. 1982. Optical signals from surface and T system membranes in skeletal muscle fibers. Experiments with the potentiometric dye NK2367. J Gen. Physiol. 80:203–230

    Article  CAS  PubMed  Google Scholar 

  • Heiny J.A., Vergara J. 1984. Dichroic behavior of the absorbance signals from dyes NK2367 and WW375 in skeletal muscle fibers. J. Gen. Physiol. 84:805–837

    Article  CAS  PubMed  Google Scholar 

  • Hidalgo C. 1985. Lipid phase of transverse tubule membranes from skeletal muscle. An electron paramagnetic resonance study. Biophys. J. 47:757–764

    CAS  PubMed  Google Scholar 

  • Huxley A.F., Taylor R.E. 1958. Local activation of striated muscle fibers. J. Physiol. 144:426–451

    CAS  PubMed  Google Scholar 

  • Kim A.M., Vergara J.L. 1998a. Fast voltage gating of Ca2+ release in frog skeletal muscle revealed by supercharging pulses. J. Physiol. 511:509–518

    Article  CAS  Google Scholar 

  • Kim A.M., Vergara J.L. 1998b. Supercharging accelerates T-tubule membrane potential changes in voltage clamped frog skeletal muscle fibers. Biophys. J. 75:2098–2116

    CAS  Google Scholar 

  • Knisley S.B., Justice R.K., Kong W., Johnson P.L. 2000. Ratiometry of transmembrane voltage-sensitive fluorescent dye emission in hearts. Am. J. Physiol. 279:H1421–H1433

    CAS  Google Scholar 

  • Lannergren J., Bruton J.D., Westerblad H. 1999. Vacuole formation in fatigued single muscle fibres from frog and mouse. J. Muscle Res. Cell Motil 20:19–32

    Article  CAS  PubMed  Google Scholar 

  • Nakajima S., Gilai A. 1980a. Action potentials of isolated single muscle fibers recorded by potential-sensitive dyes. J. Gen. Physiol. 76:729–750

    Article  CAS  Google Scholar 

  • Nakajima S., Gilai A. 1980b. Radial propagation of muscle action potential along the tubular system examined by potential-sensitive dyes. J. Gen. Physiol. 76:751–762

    Article  CAS  Google Scholar 

  • Obaid A.L., Koyano T., Lindstrom J., Sakai T., Salzberg B.M. 1999. Spatiotemporal patterns of activity in an intact mammalian network with single-cell resolution: optical studies of nicotinic activity in an enteric plexus. J. Neurosci. 19:3073–3093

    CAS  PubMed  Google Scholar 

  • Pediconi M.F., Donoso P., Hidalgo C., Barrantes F.J. 1987. Lipid composition of purified transverse tubule membranes isolated from amphibian skeletal muscle. Biochim. Biophys. Acta 921:398–404

    CAS  PubMed  Google Scholar 

  • Revel J.P. 1962. The sarcoplasmic reticulum of the bat cricothyroid muscle. J. Cell Biol. 12:571–588

    Article  CAS  PubMed  Google Scholar 

  • Rohr S., Kucera J.P. 1998. Optical recording system based on a fiber optic image conduit: assessment of microscopic activation patterns in cardiac tissue. Biophys. J. 75:1062–1075

    CAS  PubMed  Google Scholar 

  • Rohr S., Salzberg B.M. 1994. Multiple site optical recording of transmembrane voltage (MSORTV) in patterned growth heart cell cultures: assessing electrical behavior, with microsecond resolution, on a cellular and subcellular scale. Biophys. J. 67:1301–1315

    Article  CAS  PubMed  Google Scholar 

  • Ross W.N., Salzberg B.M., Cohen L.B., Grinvald A., Davila H.V., Waggoner A.S., Wang C.H. 1977. Changes in absorption, fluorescence, dichroism, and birefringence in stained giant axons: optical measurement of membrane potential. J. Membrane. Biol. 33:141–183

    Article  CAS  Google Scholar 

  • Salzberg B.M., Davila H.V., Cohen L.B. 1973. Optical recording of impulses in individual neurones of an invertebrate central nervous system. Nature 246:508–509

    Article  CAS  PubMed  Google Scholar 

  • Squire J.M. 1997. Architecture and function in the muscle sarcomere. Curr. Opin. Struct. Biol. 7:247–257

    Article  CAS  PubMed  Google Scholar 

  • Szentesi P., Jacquemond V., Kovacs L., Csernoch L. 1997. Intramembrane charge movement and sarcoplasmic calcium release in enzymatically isolated mammalian skeletal muscle fibres. J. Physiol. 505:371–384

    Article  CAS  PubMed  Google Scholar 

  • Tsau Y., Wenner P., O’Donovan M.J., Cohen L.B., Loew L.M., Wuskell J.P. 1996. Dye screening and signal-to-noise ratio for retrogradely transported voltage-sensitive dyes. J. Neurosci. Methods 70:121–129

    Article  CAS  PubMed  Google Scholar 

  • Tutdibi O., Brinkmeier H., Rudel R., Fohr K.J. 1999. Increased calcium entry into dystrophin-deficient muscle fibres of MDX and ADR-MDX mice is reduced by ion channel blockers. J. Physiol. 515:859–868

    Article  CAS  PubMed  Google Scholar 

  • Vergara J., Bezanilla F. 1976. Fluorescence changes during electrical activity in frog muscle stained with merocyanine. Nature 259:684–686

    Article  CAS  PubMed  Google Scholar 

  • Vergara J., Delay M. 1986. A transmission delay and the effect of temperature at the triadic junction of skeletal muscle. Proc. R. Soc. Lond. B 229:97–110

    Article  CAS  PubMed  Google Scholar 

  • Vergara J.L., Bezanilla F. 1981. Optical studies of E-C coupling with potentiometric dyes. In: A.G.M. Brazier, editor, The Regulation of Muscle Contraction: Excitation-contraction coupling. pp. 66–77. Academic Press, Inc., New York

    Google Scholar 

  • Vergara J.L., Delay M., Heiny J.A., Ribalet B. 1983. Optical studies of T-system potential and calcium release in skeletal muscle fibers. In: A.G.a.W. Moody, editor, The Physiology of Excitable Cells. pp. 343–355. Alan R. Liss, Inc., New York

    Google Scholar 

  • Woods C.E., Novo D., Difranco M., Capote J., Vergara J.L. 2005. Propagation in the transverse tubular system and voltage dependence of calcium release in normal and mdx muscle fibres. J. Physiol. 568:867–880

    Article  CAS  PubMed  Google Scholar 

  • Woods C.E., Novo D., DiFranco M., Vergara J.L. 2004. The action potential-evoked sarcoplasmic reticulum calcium release is impaired in mdx mouse muscle fibres. J. Physiol. 557:59–75

    Article  CAS  PubMed  Google Scholar 

  • Zhang J., Davidson R.M., Wei M.D., Loew L.M. 1998. Membrane electric properties by combined patch clamp and fluorescence ratio imaging in single neurons. Biophys. J. 74:48–53

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by National Institutes of Health grants AR47664 and GM074706, and a Grant in Aid from the Muscular Dystrophy Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.L. Vergara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DiFranco, M., Capote, J. & Vergara, J. Optical Imaging and Functional Characterization of the Transverse Tubular System of Mammalian Muscle Fibers using the Potentiometric Indicator di-8-ANEPPS. J Membrane Biol 208, 141–153 (2005). https://doi.org/10.1007/s00232-005-0825-9

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-005-0825-9

Keywords

Navigation