Skip to main content

Advertisement

Log in

Lifestyle Interventions for Elevated Blood Pressure in Childhood—Approaches and Outcomes

  • Pediatric Hypertension (C Hanevold, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The purpose of this review is to provide an overview of existing and emerging lifestyle treatments in the clinical management of primary elevated blood pressure and hypertension in pediatric patients. The authors hope to expand the knowledge base surrounding pediatric hypertension and update clinicians on best practices to improve outcomes.

Recent Findings

Elevated blood pressure is traditionally addressed with broad lifestyle recommendations such as limiting salt consumption and losing weight. This approach is not well adapted for pediatric patients. Novel and often underutilized approaches to the treatment of hypertension in pediatrics include psychological counseling for behavior modification, circadian nutrition, consistent use of interdisciplinary teams, manipulation of macronutrients, stress management, technology-infused interventions, and systemic changes to the food environment.

Summary

Elevated blood pressure is a pervasive condition affecting cardiovascular disease and mortality risk. Increasingly, pediatric patients are presenting with elevated blood pressure with etiologies known to be affected by lifestyle behaviors. Weight management, dietary modifications, and daily physical activity are well-researched methods for improving individual blood pressure measurements. These strategies can sometimes be as effective as pharmacological interventions at lowering blood pressure. However, compliance with these individual recommendations is not consistent and has led to unsatisfactory results. There are emerging treatment trends that may provide non-traditional and more effective non-pharmacologic routes to blood pressure management in pediatric patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

BP:

Blood pressure

EBP:

Elevated blood pressure

HTN:

Hypertension

DASH:

Dietary approaches to stop hypertension

AAP:

American Association of Pediatrics

RAAS:

Renin-angiotensin-aldosterone system

Na:K:

Sodium-potassium ratio

ACE:

Angiotensin-converting enzyme

CVD:

Cardiovascular disease

AI:

Adequate intake

NHANES:

National Health and Nutrition Examination Survey

BMI:

Body mass index

References

  1. Bello JK, Mohanty N, Bauer V, Rittner SS, Rao G. Pediatric hypertension: provider perspectives. Glob Pediat Health. 2017;4:2333794X17712637.

  2. Dionne JM. Evidence gaps in the identification and treatment of hypertension in children. Can J Cardiol. 2020;36(9):1384–93.

    Article  PubMed  Google Scholar 

  3. Flynn JT, Kaelber DC, Baker-Smith CM, Blowey D, Carroll AE, Daniels SR, et al. Clinical practice guideline for screening and management of high blood pressure in children and adolescents. Pediatrics. 2017;140(3): e20171904.

    Article  PubMed  Google Scholar 

  4. Zhubi-Bakija F, Bajraktari G, Bytyçi I, Mikhailidis DP, Henein MY, Latkovskis G, et al. The impact of type of dietary protein, animal versus vegetable, in modifying cardiometabolic risk factors: a position paper from the International Lipid Expert Panel (ILEP). Clin Nutr. 2021;40(1):255–76.

    Article  CAS  PubMed  Google Scholar 

  5. Binka E, Brady TM. Real-world strategies to treat hypertension associated with pediatric obesity. Curr Hypertens Rep. 2019;21(2):18.

    Article  PubMed  Google Scholar 

  6. Fox C. Pediatric hypertension. Primary Care: Clinics in Office Practice. 2021;48(3):367–78.

    Article  PubMed  Google Scholar 

  7. Abrignani MG, Lucà F, Favilli S, Benvenuto M, Rao CM, Di Fusco SA, et al. Lifestyles and cardiovascular prevention in childhood and adolescence. Pediatr Cardiol. 2019;40(6):1113–25.

    Article  PubMed  Google Scholar 

  8. Baer DJ, Althouse A, Hermann M, Johnson J, Maki KC, Marklund M, et al. Targeting the dietary na:k ratio—considerations for design of an intervention study to impact blood Pressure. Adv Nutrit. 2021:nmab099.

  9. Barlow SE, Expert Committee. Expert committee recommendations regarding the prevention, assessment, and treatment of child and adolescent overweight and obesity: summary report. Pediatrics. 2007;120(Supplement_4):S164-S92.

  10. Ryan DH, Yockey SR. Weight loss and improvement in comorbidity: differences at 5%, 10%, 15%, and over. Curr Obes Rep. 2017;6(2):187–94.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Genovesi S, Orlando A, Rebora P, Giussani M, Antolini L, Nava E, et al. Effects of lifestyle modifications on elevated blood pressure and excess weight in a population of italian children and adolescents. Am J Hypertens. 2018;31(10):1147–55.

    Article  CAS  PubMed  Google Scholar 

  12. Ferreira YA, Kravchychyn AC, Vicente SD, Campos RM, Tock L, Oyama LM, et al. An interdisciplinary weight loss program improves body composition and metabolic profile in adolescents with obesity: associations with the dietary inflammatory index. Front Nutrit. 2019;6.

  13. Resnicow K, McMaster F, Bocian A, Harris D, Zhou Y, Snetselaar L, et al. Motivational interviewing and dietary counseling for obesity in primary care: an RCT. Pediatrics. 2015;135(4):649–57.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Pauwaert K, Dejonckheere S, Bruneel E, Van Der Jeugt J, Keersmaekers L, Roggeman S, et al. The effect of a multidisciplinary weight loss program on renal circadian rhythm in obese adolescents. Eur J Pediatr. 2019;178(12):1849–58.

    Article  CAS  PubMed  Google Scholar 

  15. Gartlehner G, Vander Schaaf EB, Orr C, Kennedy SM, Clark R, Viswanathan M. Screening for hypertension in children and adolescents: updated evidence report and systematic review for the US Preventive Services Task Force. JAMA. 2020;324(18):1884–95.

    Article  PubMed  Google Scholar 

  16. Dong OM. Excessive dietary sodium intake and elevated blood pressure: a review of current prevention and management strategies and the emerging role of pharmaconutrigenetics. BMJ Nutr Prev Health. 2018;1(1):7–16.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Yang Q, Zhang Z, Kuklina EV, Fang J, Ayala C, Hong Y, et al. Sodium intake and blood pressure among US children and adolescents. Pediatrics. 2012;130(4):611–9.

    Article  PubMed  Google Scholar 

  18. He FJ, Campbell NRC, Woodwawrd M, MacGregor GA. Salt reduction to prevent hypertension: the reasons of the controversy. Eur Soc Cardiol. 2021;42:2501–5.

    Google Scholar 

  19. Gallibois CM, Jawa NA, Noone DG. Hypertension in pediatric patients with chronic kidney disease: management challenges. Int J Nephrol Renovasc Dis. 2017;10:205–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Joshi S, Ettinger L, Liebman SE. Plant-based diets and hypertension. Am J Lifestyle Med. 2019;14(4):397–405.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Couch SC, Saelens BE, Khoury PR, Dart KB, Hinn K, Mitsnefes MM, et al. Dietary approaches to stop hypertension dietary intervention improves blood pressure and vascular health in youth with elevated blood pressure. Hypertension. 2021;77(1):241–51.

    Article  CAS  PubMed  Google Scholar 

  22. Connolly Sean D, Ward KM. The role of exercise prescription in pediatric preventive cardiology programs. Pediatr Ann. 2018;47(12):e494–8.

    CAS  PubMed  Google Scholar 

  23. Headid Iii RJ, Park S-Y. The impacts of exercise on pediatric obesity. Clin Exp Pediatr. 2021;64(5):196–207.

    Article  PubMed  Google Scholar 

  24. Sung K-D, Pekas EJ, Scott SD, Son W-M, Park S-Y. The effects of a 12-week jump rope exercise program on abdominal adiposity, vasoactive substances, inflammation, and vascular function in adolescent girls with prehypertension. Eur J Appl Physiol. 2019;119(2):577–85.

    Article  CAS  PubMed  Google Scholar 

  25. Armstrong S, Wong CA, Perrin E, Page S, Sibley L, Skinner A. Association of physical activity with income, race/ethnicity, and sex among adolescents and young adults in the United States: findings from the National Health and Nutrition Examination Survey, 2007–2016. JAMA Pediatr. 2018;172(8):732–40.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bernardo S, Krallman R, Kline-Rogers E, Montgomery D, Brown AM, DuRussel-Weston J, et al. Physiological and lifestyle factors associated with abnormal blood pressure in adolescents before and after a school-based wellness program in michigan: a report from project healthy schools. J Adolesc Health. 2021;69(1):127–33.

    Article  PubMed  Google Scholar 

  27. National Academies of Sciences E, Medicine. Dietary reference intakes for sodium and potassium. 2019.

  28. Brouillard AM, Deych E, Canter C, Rich MW. Trends in sodium intake in children and adolescents in the US and the impact of US Department of Agriculture Guidelines: NHANES 2003–2016. J Pediatr. 2020;225:117–23.

    Article  CAS  PubMed  Google Scholar 

  29. Buendia JR, Bradlee ML, Daniels SR, Singer MR, Moore LL. Longitudinal effects of dietary sodium and potassium on blood pressure in adolescent girls. JAMA Pediatr. 2015;169(6):560–8.

    Article  PubMed  Google Scholar 

  30. Abboud M. Vitamin D supplementation and blood pressure in children and adolescents: a systematic review and meta-analysis. Nutrients. 2020;12(4).

  31. Aburto NJ, Hanson S, Gutierrez H, Hooper L, Elliott P, Cappuccio FP. Effect of increased potassium intake on cardiovascular risk factors and disease: systematic review and meta-analyses. BMJ: British Med J. 2013;346:f1378.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Perez V, Chang ET. Sodium-to-potassium ratio and blood pressure, hypertension, and related factors. Adv Nutr. 2014;5(6):712–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Soliman RH, Pollock DM. Circadian control of sodium and blood pressure regulation. Am J Hypertens. 2021;34(11):1130–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sparano S, Lauria F, Ahrens W, Fraterman A, Thumann B, Iacoviello L, et al. Sleep duration and blood pressure in children: analysis of the pan-European IDEFICS cohort. The Journal of Clinical Hypertension. 2019;21(5):572–8.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Daniels SR, Pratt CA, Hollister EB, Labarthe D, Cohen DA, Walker JR, et al. Promoting cardiovascular health in early childhood and transitions in childhood through adolescence: a workshop report. J Pediatr. 2019;209:240-51.e1.

    Article  PubMed  Google Scholar 

  36. Wang G, Liu X, Bartell TR, Pearson C, Cheng TL, Wang X. Vitamin D trajectories from birth to early childhood and elevated systolic blood pressure during childhood and adolescence. Hypertension. 2019;74(2):421–30.

    Article  CAS  Google Scholar 

  37. McMullan CJ, Borgi L, Curhan GC, Fisher N, Forman JP. The effect of vitamin D on renin-angiotensin system activation and blood pressure: a randomized control trial. J Hypertens. 2017;35(4):822–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kivimäki M, Steptoe A. Effects of stress on the development and progression of cardiovascular disease. Nat Rev Cardiol. 2018;15(4):215–29.

    Article  PubMed  Google Scholar 

  39. Cohen BE, Edmondson D, Kronish IM. State of the art review: depression, stress, anxiety, and cardiovascular disease. Am J Hypertens. 2015;28(11):1295–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Barnes AJ, Anthony BJ, Karatekin C, Lingras KA, Mercado R, Thompson LA. Identifying adverse childhood experiences in pediatrics to prevent chronic health conditions. Pediatr Res. 2020;87(2):362–70.

    Article  PubMed  Google Scholar 

  41. Oswald LB, Fox RS, Murphy KM, Salsman JM, Sanford SD, McDade TW, et al. Preliminary effects of mindfulness training on inflammatory markers and blood pressure in young adult survivors of cancer: secondary analysis of a pilot randomized controlled trial. Int J Behav Med. 2022.

  42. Zhang F, Zhang Y, Jiang N, Zhai Q, Hu J, Feng J. Influence of mindfulness and relaxation on treatment of essential hypertension: meta-analysis. J Healthcare Eng. 2021;2021:2272469.

    PubMed  PubMed Central  Google Scholar 

  43. Vital JE, de Morais Nunes A, New BS, de Sousa BD, Nascimento MF, Formiga MF, Fernandes AT. Biofeedback therapeutic effects on blood pressure levels in hypertensive individuals: A systematic review and meta-analysis. Complement Therap Clin Prac. 2021;44:101420.

  44. Stewart DL, Harshfield GA, Zhu H, Hanevold CD. Stress and salt sensitivity in primary hypertension. Curr Hypertens Rep. 2015;17(2):2.

    Article  PubMed  Google Scholar 

  45. Wu J, Liao W, Udenigwe CC. Revisiting the mechanisms of ACE inhibitory peptides from food proteins. Trends Food Sci Technol. 2017;69:214–9.

    Article  CAS  Google Scholar 

  46. Hsu MSH, Rouf A, Allman-Farinelli M. Effectiveness and behavioral mechanisms of social media interventions for positive nutrition behaviors in adolescents: a systematic review. J Adolesc Health. 2018;63(5):531–45.

    Article  PubMed  Google Scholar 

  47. Sharps MA, Thomas E, Blissett JM. Using pictorial nudges of fruit and vegetables on tableware to increase children’s fruit and vegetable consumption. Appetite. 2020;144: 104457.

    Article  PubMed  Google Scholar 

  48. Marcano-Olivier M, Pearson R, Ruparell A, Horne PJ, Viktor S, Erjavec M. A low-cost Behavioural Nudge and choice architecture intervention targeting school lunches increases children’s consumption of fruit: a cluster randomised trial. Int J Behav Nutr Phys Act. 2019;16(1):20.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Mutschler C, Naccarato E, Rouse J, Davey C, McShane K. Realist-informed review of motivational interviewing for adolescent health behaviors. Syst Rev. 2018;7(1):109.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Turner T, Spruijt-Metz D, Wen CKF, Hingle MD. Prevention and treatment of pediatric obesity using mobile and wireless technologies: a systematic review. Pediatr Obes. 2015;10(6):403–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Miller ER III, Alzahrani HA, Bregaglio DS, Christensen JK, Palmer SL, Alsharif FH, et al. Evaluation of a Video-assisted patient education program to reduce blood pressure delivered through the electronic medical record: results of a quality improvement project. Am J Hypertens. 2021;34(12):1328–35.

    Article  PubMed  Google Scholar 

  52. Tallon JM, Saavedra Dias R, Costa AM, Leitão JC, Barros A, Rodrigues V, et al. Impact of technology and school-based nutrition education programs on nutrition knowledge and behavior during adolescence—a systematic review. Scand J Educ Res. 2021;65(1):169–80.

    Article  Google Scholar 

  53. Wickham CA, Carbone ET. What’s technology cooking up? A systematic review of the use of technology in adolescent food literacy programs. Appetite. 2018;125:333–44.

    Article  PubMed  Google Scholar 

  54. Holmberg C, Berg C, Dahlgren J, Lissner L, Chaplin JE. Health literacy in a complex digital media landscape: Pediatric obesity patients’ experiences with online weight, food, and health information. Health Inform J. 2018;25(4):1343–57.

    Article  PubMed  Google Scholar 

  55. Commodore-Mensah Y, Turkson-Ocran R-A, Foti K, Cooper LA, Himmelfarb CD. Associations between social determinants and hypertension, stage 2 hypertension, and controlled blood pressure among men and women in the United States. Am J Hypertens. 2021;34(7):707–17.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Mayne ST, McKinnon RA, Woodcock J. Reducing sodium intake in the US: healthier lives. Healthier Future JAMA. 2021;326(17):1675–6.

    PubMed  Google Scholar 

  57. Loopstra R. Interventions to address household food insecurity in high-income countries. Proc Nutrit Soc. 2018;77(3):270–81.

    Article  PubMed  Google Scholar 

  58. De Marchis EH, Torres JM, Benesch T, Fichtenberg C, Allen IE, Whitaker EM, et al. Interventions addressing food insecurity in health care settings: a systematic review. Ann Fam Med. 2019;17(5):436–47.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Austin Lobitz.

Ethics declarations

Conflict of Interest

The authors declare no competing interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Pediatric Hypertension

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lobitz, C.A., Yamaguchi, I. Lifestyle Interventions for Elevated Blood Pressure in Childhood—Approaches and Outcomes. Curr Hypertens Rep 24, 589–598 (2022). https://doi.org/10.1007/s11906-022-01217-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-022-01217-1

Keywords

Navigation