Skip to main content

Advertisement

Log in

Stress and Salt Sensitivity in Primary Hypertension

  • Pediatric Hypertension (B Falkner, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

As the development of hypertension and target organ damage becomes more prevalent, it becomes exceedingly important to determine the underlying mechanisms through which this detrimental development occurs. Specifically, our studies and others have explored mechanisms through which stress elicits a salt-sensitive response in approximately 20–30 % of the population, resulting in the early development of hypertension and target organ damage. Data associated with this stress-induced cardiovascular response pattern have recently demonstrated additional effects across the body systems including factors contributing to the development of osteoporosis, obesity, autoimmune disease, and chronic inflammation. As each of these diseases become more prevalent in conjunction with hypertension, further research may discover stress and salt sensitivity to be at the “heart” of the matter for the development of many of today’s most deadly conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Chrysant GS, Bakir S, Oparil S. Dietary salt reduction in hypertension—what is the evidence and why is it still controversial? Prog Cardiovasc Dis. 1999;42(1):23–38. PubMed PMID: 10505491.

    Article  CAS  PubMed  Google Scholar 

  2. de Leeuw PW, Kroon AA. Salt and sensitivity. Hypertension. 2013;62(3):461–2. doi:10.1161/HYPERTENSIONAHA.113.01831. PubMed PMID: 23897072. This report provides a valuable recent review of salt sensitivity and the development of hypertension.

  3. Ambard L, Schmid F. An address on the mechanism of the diuresis produced by ingestion of water. Can Med Assoc J. 1929;21(3):265–8. PubMed PMID: 20317478; PubMed Central PMCID: PMC1710823.

    PubMed Central  CAS  PubMed  Google Scholar 

  4. Sullivan JM. Salt sensitivity. Definition, conception, methodology, and long-term issues. Hypertension. 1991;17(1 Suppl):I61–8. PubMed PMID: 1987013.

    Article  CAS  PubMed  Google Scholar 

  5. Weinberger MH. Salt sensitivity: does it play an important role in the pathogenesis and treatment of hypertension? Curr Opin Nephrol Hypertens. 1996;5(3):205–8. PubMed PMID: 8737853.

    Article  CAS  PubMed  Google Scholar 

  6. Hummel SL, Seymour EM, Brook RD, Kolias TJ, Sheth SS, Rosenblum HR, et al. Low-sodium dietary approaches to stop hypertension diet reduces blood pressure, arterial stiffness, and oxidative stress in hypertensive heart failure with preserved ejection fraction. Hypertension. 2012;60(5):1200–6. doi:10.1161/HYPERTENSIONAHA.112.202705. PubMed PMID: 23033371; PubMed Central PMCID: PMC3522520.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Azadbakht L, Fard NR, Karimi M, Baghaei MH, Surkan PJ, Rahimi M, et al. Effects of the Dietary Approaches to Stop Hypertension (DASH) eating plan on cardiovascular risks among type 2 diabetic patients: a randomized crossover clinical trial. Diabetes Care. 2011;34(1):55–7. doi:10.2337/dc10-0676. PubMed PMID: 20843978; PubMed Central PMCID: PMC3005461.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Edwards KM, Wilson KL, Sadja J, Ziegler MG, Mills PJ. Effects on blood pressure and autonomic nervous system function of a 12-week exercise or exercise plus DASH-diet intervention in individuals with elevated blood pressure. Acta Physiol (Oxf). 2011;203(3):343–50. doi:10.1111/j.1748-1716.2011.02329.x. PubMed PMID: 21649862; PubMed Central PMCID: PMC3192938.

    Article  CAS  Google Scholar 

  9. Liese AD, Bortsov A, Gunther AL, Dabelea D, Reynolds K, Standiford DA, et al. Association of DASH diet with cardiovascular risk factors in youth with diabetes mellitus: the SEARCH for Diabetes in Youth study. Circulation. 2011;123(13):1410–7. doi:10.1161/CIRCULATIONAHA.110.955922. PubMed PMID: 21422385.

    Article  CAS  PubMed  Google Scholar 

  10. Vollmer WM, Sacks FM, Ard J, Appel LJ, Bray GA, Simons-Morton DG, et al. Effects of diet and sodium intake on blood pressure: subgroup analysis of the DASH-sodium trial. Ann Intern Med. 2001;135(12):1019–28. PubMed PMID: 11747380.

    Article  CAS  PubMed  Google Scholar 

  11. Centers for Disease Control and Prevention. Application of lower sodium intake recommendations to adults—United States, 1999–2006. MMWR Morb Mortal Wkly Rep. 2009;58(11):281–3. PubMed PMID: 19325529.

    Google Scholar 

  12. Harshfield GA, Pulliam DA, Alpert BS. Patterns of sodium excretion during sympathetic nervous system arousal. Hypertension. 1991;17(6 Pt 2):1156–60. PubMed PMID: 1646167.

    Article  CAS  PubMed  Google Scholar 

  13. Zhu H, Pollock NK, Kotak I, Gutin B, Wang X, Bhagatwala J, et al. Dietary sodium, adiposity, and inflammation in healthy adolescents. Pediatrics. 2014;133(3):e635–42. doi:10.1542/peds.2013-1794. PubMed PMID: 24488738; PubMed Central PMCID: PMC3934330. This highly publicized article provides a link between salt sensitivity and inflammation in adolescents.

  14. Campese VM, Romoff MS, Levitan D, Saglikes Y, Friedler RM, Massry SG. Abnormal relationship between sodium intake and sympathetic nervous system activity in salt-sensitive patients with essential hypertension. Kidney Int. 1982;21(2):371–8. PubMed PMID: 7069999.

    Article  CAS  PubMed  Google Scholar 

  15. Strazzullo P, Barba G, Cappuccio FP, Siani A, Trevisan M, Farinaro E, et al. Altered renal sodium handling in men with abdominal adiposity: a link to hypertension. J Hypertens. 2001;19(12):2157–64. PubMed PMID: 11725158.

    Article  CAS  PubMed  Google Scholar 

  16. Weinberger MH. Salt sensitivity of blood pressure in humans. Hypertension. 1996;27(3 Pt 2):481–90. PubMed PMID: 8613190. This report is a recent review linking salt sensitivity and blood pressure change in human studies.

  17. Ando K. Increased salt sensitivity in obese hypertension: role of the sympathetic nervous system. Current Hypertension Reviews. 2014. PubMed PMID: 24993282.

  18. Omvik P. Pressure natriuresis in hypertension. Acta Medica Scandinavica Supplementum. 1981;646:77–89. PubMed PMID: 6941671.

    CAS  PubMed  Google Scholar 

  19. Friedman R, Iwai J. Genetic predisposition and stress-induced hypertension. Science. 1976;193(4248):161–2. PubMed PMID: 945610.

    Article  CAS  PubMed  Google Scholar 

  20. Grignolo A, Koepke JP, Obrist PA. Renal function, heart rate, and blood pressure during exercise and avoidance in dogs. Am J Physiol. 1982;242(5):R482–90. PubMed PMID: 7081474.

    CAS  PubMed  Google Scholar 

  21. Koepke JP, Obrist PA. Angiotensin II in the renal excretory response to behavioral stress in conscious dogs. Am J Physiol. 1983;245(2):R259–64. PubMed PMID: 6349389.

    CAS  PubMed  Google Scholar 

  22. Koepke JP. Renal responses to stressful environmental stimuli. Fed Proc. 1985;44(13):2823–7. PubMed PMID: 2995142.

    CAS  PubMed  Google Scholar 

  23. Koepke JP, Jones S, DiBona GF. Renal nerve activity and renal function during environmental stress in DOCA-NaCl rats. Am J Physiol. 1986;251(2 Pt 2):R289–94. PubMed PMID: 3740311.

    CAS  PubMed  Google Scholar 

  24. Koepke JP, DiBona GF. Blunted natriuresis to atrial natriuretic peptide in chronic sodium-retaining disorders. Am J Physiol. 1987;252(5 Pt 2):F865–71. PubMed PMID: 2953252.

    CAS  PubMed  Google Scholar 

  25. Koepke JP, Jones S, DiBona GF. Renal nerves mediate blunted natriuresis to atrial natriuretic peptide in cirrhotic rats. Am J Physiol. 1987;252(5 Pt 2):R1019–23. PubMed PMID: 2953257.

    CAS  PubMed  Google Scholar 

  26. Koepke JP, Jones S, DiBona GF. Stress increases renal nerve activity and decreases sodium excretion in Dahl rats. Hypertension. 1988;11(4):334–8. PubMed PMID: 3356455.

    Article  CAS  PubMed  Google Scholar 

  27. Koepke JP. Effect of environmental stress on neural control of renal function. Miner Electrolyte Metab. 1989;15(1–2):83–7. PubMed PMID: 2644527.

    CAS  PubMed  Google Scholar 

  28. Young JB, Landsberg L. Diet-induced changes in sympathetic nervous system activity: possible implications for obesity and hypertension. J Chronic Dis. 1982;35(12):879–86. PubMed PMID: 6816809.

    Article  CAS  PubMed  Google Scholar 

  29. Corry DB, Tuck ML. Obesity, hypertension, and sympathetic nervous system activity. Curr Hypertens Rep. 1999;1(2):119–26. PubMed PMID: 10981052.

    Article  CAS  PubMed  Google Scholar 

  30. Hall JE. Pathophysiology of obesity hypertension. Curr Hypertens Rep. 2000;2(2):139–47. PubMed PMID: 10981140.

    Article  CAS  PubMed  Google Scholar 

  31. Fauvel JP, Laville M, Bernard N, Hadj-Aissa A, Daoud S, Thibout E, et al. Effects of lisinopril on stress-induced peak blood pressure and sodium excretion: a double-blind controlled study. J Cardiovasc Pharmacol. 1994;23(2):227–31. PubMed PMID: 7511751.

    Article  CAS  PubMed  Google Scholar 

  32. Rollnik JD, Mills PJ, Dimsdale JE. Characteristics of individuals who excrete versus retain sodium under stress. J Psychosom Res. 1995;39(4):499–505. PubMed PMID: 7562679.

    Article  CAS  PubMed  Google Scholar 

  33. Schneider MP, Klingbeil AU, Schlaich MP, Langenfeld MR, Veelken R, Schmieder RE. Impaired sodium excretion during mental stress in mild essential hypertension. Hypertension. 2001;37(3):923–7. PubMed PMID: 11244019.

    Article  CAS  PubMed  Google Scholar 

  34. Sowers JR, Nyby M, Stern N, Beck F, Baron S, Catania R, et al. Blood pressure and hormone changes associated with weight reduction in the obese. Hypertension. 1982;4(5):686–91. PubMed PMID: 7049921.

    Article  CAS  PubMed  Google Scholar 

  35. Reisin E, Frohlich ED, Messerli FH, Dreslinski GR, Dunn FG, Jones MM, et al. Cardiovascular changes after weight reduction in obesity hypertension. Ann Intern Med. 1983;98(3):315–9. PubMed PMID: 6338789.

    Article  CAS  PubMed  Google Scholar 

  36. Masuo K, Mikami H, Itoh M, Ogihara T, Tuck ML. Sympathetic activity and body mass index contribute to blood pressure levels. Hypertens Res. 2000;23(4):303–10. PubMed PMID: 10912765.

    Article  CAS  PubMed  Google Scholar 

  37. Landsberg L, Troisi R, Parker D, Young JB, Weiss ST. Obesity, blood pressure, and the sympathetic nervous system. Ann Epidemiol. 1991;1(4):295–303. PubMed PMID: 1669511.

    Article  CAS  PubMed  Google Scholar 

  38. Troisi RJ, Weiss ST, Parker DR, Sparrow D, Young JB, Landsberg L. Relation of obesity and diet to sympathetic nervous system activity. Hypertension. 1991;17(5):669–77. PubMed PMID: 2022410.

    Article  CAS  PubMed  Google Scholar 

  39. Light KC, Turner JR. Stress-induced changes in the rate of sodium excretion in healthy black and white men. J Psychosom Res. 1992;36(5):497–508. PubMed PMID: 1619590.

    Article  CAS  PubMed  Google Scholar 

  40. Messerli FH, Sundgaard-Riise K, Reisin E, Dreslinski G, Dunn FG, Frohlich E. Disparate cardiovascular effects of obesity and arterial hypertension. Am J Med. 1983;74(5):808–12. PubMed PMID: 6340494.

    Article  CAS  PubMed  Google Scholar 

  41. Harshfield GA, Hanevold C, Kapuku GK, Dong Y, Castles ME, Ludwig DA. The association of race and sex to the pressure natriuresis response to stress. Ethn Dis. 2007;17(3):498–502. PubMed PMID: 17985504.

    PubMed  Google Scholar 

  42. Murro DG, Beavers M, Harshfield GA, Kapuku GK. Aldosterone contributes to elevated left ventricular mass in black boys. Pediatr Nephrol. 2013;28(4):655–60. doi:10.1007/s00467-012-2367-6. PubMed PMID: 23179199; PubMed Central PMCID: PMC3594547.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Harshfield G, Hanevold C, Ortiz L, Nwobi O, Johnson M, Stewart D. Suppression of Ang II inhibits sodium retention during mental stress. Hypertension. 2013;62:A634.

    Article  Google Scholar 

  44. Stewart D, Harshfield G, Dong Y, Harris R, Kapuku G, Grim C. Differences in sodium and potassium regulation during mental stress in normotensive youth. Hypertension. 2013;62:A523.

    Google Scholar 

  45. Light KC, Koepke JP, Obrist PA, Willis PWT. Psychological stress induces sodium and fluid retention in men at high risk for hypertension. Science. 1983;220(4595):429–31. PubMed PMID: 6836285.

    Article  CAS  PubMed  Google Scholar 

  46. Kapuku G, Harshfield G, Wilson M, Mackey L, Gillis D, Edmunds L, et al. Impaired pressure natriuresis is associated with preclinical markers of abnormal cardiac structure and function. AM J Hypetens. 2003;16:211A. abstract.

    Article  Google Scholar 

  47. Kapuku GK, Treiber FA, Davis HC, Harshfield GA, Cook BB, Mensah GA. Hemodynamic function at rest, during acute stress, and in the field: predictors of cardiac structure and function 2 years later in youth. Hypertension. 1999;34(5):1026–31. PubMed PMID: 10567177.

    Article  CAS  PubMed  Google Scholar 

  48. Harshfield GA, Dong Y, Kapuku GK, Zhu H, Hanevold CD. Stress-induced sodium retention and hypertension: a review and hypothesis. Curr Hypertens Rep. 2009;11(1):29–34. PubMed PMID: 19146798.

    Article  CAS  PubMed  Google Scholar 

  49. Hanevold CD, Harshfield GA. Stress and salt sensitivity in childhood hypertension. In: Flynn JT, Portman RJ, Ingelfinger JR, editors. Pediatric hypertension. New York: Springer; 2013. p. 267–78.

    Chapter  Google Scholar 

  50. James PA, Oparil S, Carter BL, Cushman WC, Dennison-Himmelfarb C, Handler J, et al. Evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA. 2014;311(5):507–20. doi:10.1001/jama.2013.284427. PubMed PMID: 24352797. The recently released JNC 8 defines recommended treatment protocols related to the diagnosis and treatment of hypertension.

  51. National Heart, Lung, and Blood Institute. What is the DASH eating plan? http://www.nhlbi.nih.gov/health/health-topics/topics/dash/. June 6, 2014. USA.gov. This NHLBI website provides a comprehensive summary of the DASH diet, a widely renowned non-pharmacological method for blood pressure regulation.

  52. Pollock, N, Carbone, L, Bethel, M, Dong, Y, Ortiz, L, Hanevold, C, Stewart, D, Harshfield, G. The role of the renin–angiotensin system in the bone metabolic response to mental stress. ASBMR. 2014. ID: A1401357.

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Deborah L. Stewart, Gregory A. Harshfield, Haidong Zhu, and Coral D. Hanevold declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with animal subjects performed by any of the authors. All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000. Informed consent was obtained from all patients for being included in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deborah L. Stewart.

Additional information

This article is part of the Topical Collection on Pediatric Hypertension

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stewart, D.L., Harshfield, G.A., Zhu, H. et al. Stress and Salt Sensitivity in Primary Hypertension. Curr Hypertens Rep 17, 2 (2015). https://doi.org/10.1007/s11906-014-0513-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-014-0513-1

Keywords

Navigation