Skip to main content

Advertisement

Log in

Gut Microbiome in Chronic Kidney Disease

  • Gut Microbiome, Sympathetic Nervous System, and Hypertension (MK Raizada and EM Richards, Section Editors)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

With over 100 trillion microbial cells, the gut microbiome plays important roles in both the maintenance of health and the pathogenesis of disease. Gut microbiome dysbiosis, resulted from alteration of composition and function of the gut microbiome and disruption of gut barrier function, is commonly seen in patients with chronic kidney disease (CKD). The dysbiotic gut microbiome generates excessive amounts of uremic toxins, and the impaired intestinal barrier permits translocation of these toxins into the systemic circulation. Many of these uremic toxins have been implicated in the progression of CKD and increased cardiovascular risk. Various therapeutic interventions have been proposed that aim to restore gut microbiome symbiosis. If proven effective, these interventions will have a significant impact on the management of CKD patients. In this review, we discuss the consequences of gut microbiome dysbiosis in the context of CKD, discuss the consequences of gut dysbiosis, and highlight some of the recent interventions targeting the gut microbiome for therapeutic purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Evenepoel P, Meijers BK, Bammens BR, Verbeke K. Uremic toxins originating from colonic microbial metabolism. Kidney Int Suppl. 2009;114:S12–9.

    Article  CAS  Google Scholar 

  2. Noverr MC, Huffnagle GB. Does the microbiota regulate immune responses outside the gut? Trends Microbiol. 2004;12(12):562–8.

    Article  CAS  PubMed  Google Scholar 

  3. Laparra JM, Sanz Y. Interactions of gut microbiota with functional food components and nutraceuticals. Pharmacol Res. 2010;61(3):219–25.

    Article  CAS  PubMed  Google Scholar 

  4. Russell WR, Hoyles L, Flint HJ, Dumas ME. Colonic bacterial metabolites and human health. Curr Opin Microbiol. 2013;16(3):246–54.

    Article  CAS  PubMed  Google Scholar 

  5. Schepers E, Glorieux G, Vanholder R. The gut: the forgotten organ in uremia? Blood Purif. 2010;29(2):130–6.

    Article  PubMed  Google Scholar 

  6. • Vaziri ND, Wong J, Pahl M, Piceno YM, Yuan J, Desantis TZ, et al. Chronic kidney disease alters intestinal microbial flora. Kidney Int. 2013;83(2):308–15. One of the earliest studies to look at gut microbiome in CKD; as many as 190 microbial operational taxonomic units differed significantly in abundance when the gut microbiome of ESRD patients.

    Article  PubMed  Google Scholar 

  7. Hida M, Aiba Y, Sawamura S, Suzuki N, Satoh T. Inhibition of the accumulation of uremic toxins in the blood and their precursors in the feces after oral administration of Lebenin, a lactic acid bacteria preparation, to uremic patients undergoing hemodialysis. Nephron. 1996;74(2):349–55.

    Article  CAS  PubMed  Google Scholar 

  8. Krishnamurthy VM, Wei G, Baird BC, Murtaugh M, Chonchol MB, Raphael KL, et al. High dietary fiber intake is associated with decreased inflammation and all-cause mortality in patients with chronic kidney disease. Kidney Int. 2012;81(3):300–6.

    Article  CAS  PubMed  Google Scholar 

  9. Wu MJ, Chang CS, Cheng CH, Chen CH, Lee WC, Hsu YH, et al. Colonic transit time in long-term dialysis patients. Am J Kidney Dis. 2004;44(2):322–7.

    Article  PubMed  Google Scholar 

  10. Bammens B, Verbeke K, Vanrenterghem Y, Evenepoel P. Evidence for impaired assimilation of protein in chronic renal failure. Kidney Int. 2003;64(6):2196–203.

    Article  CAS  PubMed  Google Scholar 

  11. Jernberg C, Lofmark S, Edlund C, Jansson JK. Long-term impacts of antibiotic exposure on the human intestinal microbiota. Microbiology. 2010;156(Pt 11):3216–23.

    Article  CAS  PubMed  Google Scholar 

  12. Wandersman C, Delepelaire P. Bacterial iron sources: from siderophores to hemophores. Annu Rev Microbiol. 2004;58:611–47.

    Article  CAS  PubMed  Google Scholar 

  13. KDIGO. Clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. 2012:1–150.

  14. Bastos MG, Kirsztajn GM. Chronic kidney disease: importance of early diagnosis, immediate referral and structured interdisciplinary approach to improve outcomes in patients not yet on dialysis. J Bras Nefrol. 2011;33(1):93–108.

    Article  PubMed  Google Scholar 

  15. Ito S, Yoshida M. Protein-bound uremic toxins: new culprits of cardiovascular events in chronic kidney disease patients. Toxins (Basel). 2014;6(2):665–78.

    Article  Google Scholar 

  16. Nallu A, Sharma S, Ramezani A, Muralidharan J, Raj D. Gut microbiome in chronic kidney disease: challenges and opportunities. Transl Res. 2016.

  17. Ramezani A, Raj DS. The gut microbiome, kidney disease, and targeted interventions. J Am Soc Nephrol. 2014;25(4):657–70.

    Article  CAS  PubMed  Google Scholar 

  18. Ramezani A, Massy ZA, Meijers B, Evenepoel P, Vanholder R, Raj DS. Role of the gut microbiome in uremia: a potential therapeutic target. Am J Kidney Dis. 2016;67(3):483–98.

    Article  CAS  PubMed  Google Scholar 

  19. Miyamoto Y, Watanabe H, Noguchi T, Kotani S, Nakajima M, Kadowaki D, et al. Organic anion transporters play an important role in the uptake of p-cresyl sulfate, a uremic toxin, in the kidney. Nephrol Dial Transplant. 2011;26(8):2498–502.

    Article  CAS  PubMed  Google Scholar 

  20. • Vaziri ND. CKD impairs barrier function and alters microbial flora of the intestine: a major link to inflammation and uremic toxicity. Curr Opin Nephrol Hypertens 2012. This study elegantly demonstrated the alteration of barrier function and gut microbiota in CKD; it showed a link between gut dysbiosis and inflammation.

  21. Lin CJ, Wu CJ, Pan CF, Chen YC, Sun FJ, Chen HH. Serum protein-bound uraemic toxins and clinical outcomes in haemodialysis patients. Nephrol Dial Transplant. 2010;25(11):3693–700.

    Article  CAS  PubMed  Google Scholar 

  22. Poesen R, Viaene L, Verbeke K, Augustijns P, Bammens B, Claes K, et al. Cardiovascular disease relates to intestinal uptake of p-cresol in patients with chronic kidney disease. BMC Nephrol. 2014;15:87.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Vaziri ND, Goshtasbi N, Yuan J, Jellbauer S, Moradi H, Raffatellu M, et al. Uremic plasma impairs barrier function and depletes the tight junction protein constituents of intestinal epithelium. Am J Nephrol. 2012;36(5):438–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang IK, Lai HC, Yu CJ, Liang CC, Chang CT, Kuo HL, et al. Real-time PCR analysis of the intestinal microbiotas in peritoneal dialysis patients. Appl Environ Microbiol. 2012;78(4):1107–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nakabayashi I, Nakamura M, Kawakami K, Ohta T, Kato I, Uchida K, et al. Effects of synbiotic treatment on serum level of p-cresol in haemodialysis patients: a preliminary study. Nephrol Dial Transplant. 2011;26(3):1094–8.

    Article  CAS  PubMed  Google Scholar 

  26. Andersen K, Kesper MS, Marschner JA, Konrad L, Ryu M, Kumar VS, et al. Intestinal dysbiosis, barrier dysfunction, and bacterial translocation account for CKD-related systemic inflammation. J Am Soc Nephrol. 2017;28(1):76–83.

    Article  PubMed  Google Scholar 

  27. Bliss DZ, Stein TP, Schleifer CR, Settle RG. Supplementation with gum arabic fiber increases fecal nitrogen excretion and lowers serum urea nitrogen concentration in chronic renal failure patients consuming a low-protein diet. Am J Clin Nutr. 1996;63(3):392–8.

    CAS  PubMed  Google Scholar 

  28. Rossi M, Johnson DW, Morrison M, Pascoe EM, Coombes JS, Forbes JM, et al. Synbiotics easing renal failure by improving gut microbiology (SYNERGY): a randomized trial. Clin J Am Soc Nephrol. 2016;11(2):223–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Viramontes-Horner D, Marquez-Sandoval F, Martin-del-Campo F, Vizmanos-Lamotte B, Sandoval-Rodriguez A, Armendariz-Borunda J, et al. Effect of a symbiotic gel (Lactobacillus acidophilus + Bifidobacterium lactis + inulin) on presence and severity of gastrointestinal symptoms in hemodialysis patients. J Ren Nutr. 2015;25(3):284–91.

    Article  PubMed  Google Scholar 

  30. Magnusson M, Magnusson KE, Sundqvist T, Denneberg T. Increased intestinal permeability to differently sized polyethylene glycols in uremic rats: effects of low- and high-protein diets. Nephron. 1990;56(3):306–11.

    Article  CAS  PubMed  Google Scholar 

  31. Magnusson M, Magnusson KE, Sundqvist T, Denneberg T. Impaired intestinal barrier function measured by differently sized polyethylene glycols in patients with chronic renal failure. Gut. 1991;32(7):754–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Carrero JJ, Stenvinkel P. Inflammation in end-stage renal disease—what have we learned in 10 years? Semin Dial. 2010;23(5):498–509.

    Article  PubMed  Google Scholar 

  33. Koren O, Spor A, Felin J, Fak F, Stombaugh J, Tremaroli V, et al. Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proc Natl Acad Sci U S A. 2011;108(Suppl 1):4592–8.

    Article  CAS  PubMed  Google Scholar 

  34. Wiedermann CJ, Kiechl S, Dunzendorfer S, Schratzberger P, Egger G, Oberhollenzer F, et al. Association of endotoxemia with carotid atherosclerosis and cardiovascular disease: prospective results from the Bruneck Study. J Am Coll Cardiol. 1999;34(7):1975–81.

    Article  CAS  PubMed  Google Scholar 

  35. Poesen Rl, Ramezani A, Claes K, Augustijns P, Kuypers D, Barrows IR et al. Associations of soluble CD14 and endotoxin with mortality, cardiovascular disease, and progression of kidney disease among patients with chronic kidney disease. CJASN. 2015; In Press.

  36. Raj DS, Shah VO, Rambod M, Kovesdy CP, Kalantar-Zadeh K. Association of soluble endotoxin receptor CD14 and mortality among patients undergoing hemodialysis. Am J Kidney Dis. 2009;54(6):1062–71.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lin CJ, Wu V, Wu PC, Wu CJ. Meta-analysis of the associations of p-cresyl sulfate (PCS) and indoxyl sulfate (IS) with cardiovascular events and all-cause mortality in patients with chronic renal failure. PLoS One. 2015;10(7):e0132589.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wu IW, Hsu KH, Hsu HJ, Lee CC, Sun CY, Tsai CJ, et al. Serum free p-cresyl sulfate levels predict cardiovascular and all-cause mortality in elderly hemodialysis patients—a prospective cohort study. Nephrol Dial Transplant. 2012;27(3):1169–75.

    Article  CAS  PubMed  Google Scholar 

  39. Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013;19(5):576–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Velasquez MT, Ramezani A, Manal A, Raj DS. Trimethylamine N-Oxide: The Good, the Bad and the Unknown. Toxins (Basel). 2016; 8(11).

  41. Tang WH, Wang Z, Kennedy DJ, Wu Y, Buffa JA, Agatisa-Boyle B, et al. Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ Res. 2015;116(3):448–55.

    Article  CAS  PubMed  Google Scholar 

  42. Tang WH, Wang Z, Fan Y, Levison B, Hazen JE, Donahue LM, et al. Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-N-oxide in patients with heart failure: refining the gut hypothesis. J Am Coll Cardiol. 2014;64(18):1908–14.

    Article  CAS  PubMed  Google Scholar 

  43. Yang T, Santisteban MM, Rodriguez V, Li E, Ahmari N, Carvajal JM, et al. Gut dysbiosis is linked to hypertension. Hypertension. 2015;65(6):1331–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Macfarlane S, Macfarlane GT. Regulation of short-chain fatty acid production. Proc Nutr Soc. 2003;62(1):67–72.

    Article  CAS  PubMed  Google Scholar 

  45. Le PE, Loison C, Struyf S, Springael JY, Lannoy V, Decobecq ME, et al. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J Biol Chem. 2003;278(28):25481–9.

    Article  Google Scholar 

  46. Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009;9(5):313–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mortensen FV, Nielsen H, Mulvany MJ, Hessov I. Short chain fatty acids dilate isolated human colonic resistance arteries. Gut. 1990;31(12):1391–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pluznick JL, Zou DJ, Zhang X, Yan Q, Rodriguez-Gil DJ, Eisner C et al. Functional expression of the olfactory signaling system in the kidney. Proc Natl Acad Sci U S A 2009; 106(6):2059–2064.

  49. Chow J. Probiotics and prebiotics: a brief overview. J Ren Nutr. 2002;12(2):76–86.

    Article  PubMed  Google Scholar 

  50. • Simenhoff ML, Dunn SR, Zollner GP, Fitzpatrick ME, Emery SM, Sandine WE, et al. Biomodulation of the toxic and nutritional effects of small bowel bacterial overgrowth in end-stage kidney disease using freeze-dried lactobacillus acidophilus. Miner Electrolyte Metab. 1996;22(1–3):92–6. One of the first studies determine the efficacy of probiotic use in improving ESRD patients.

    CAS  PubMed  Google Scholar 

  51. Takayama F, Taki K, Niwa T. Bifidobacterium in gastro-resistant seamless capsule reduces serum levels of indoxyl sulfate in patients on hemodialysis. Am J Kidney Dis. 2003;41(3 Suppl 1):S142–5.

    Article  PubMed  Google Scholar 

  52. Taki K, Takayama F, Niwa T. Beneficial effects of Bifidobacteria in a gastroresistant seamless capsule on hyperhomocysteinemia in hemodialysis patients. J Ren Nutr. 2005;15(1):77–80.

    Article  PubMed  Google Scholar 

  53. Natarajan R, Pechenyak B, Vyas U, Ranganathan P, Weinberg A, Liang P, et al. Randomized controlled trial of strain-specific probiotic formulation (Renadyl) in dialysis patients. Biomed Res Int. 2014;2014:568571.

    PubMed  PubMed Central  Google Scholar 

  54. Wang IK, Wu YY, Yang YF, Ting IW, Lin CC, Yen TH, et al. The effect of probiotics on serum levels of cytokine and endotoxin in peritoneal dialysis patients: a randomised, double-blind, placebo-controlled trial. Benef Microbes. 2015;6(4):423–30.

    Article  PubMed  Google Scholar 

  55. Ando Y, Miyata Y, Tanba K et al. Effect of oral intake of an enteric capsule preparation containing Bifidobacterium longum on the progression of chronic renal failure. Nihon Jinzo Gakkai Shi. 2003;45(8):759–764.

  56. Ranganathan N, Friedman EA, Tam P, Rao V, Ranganathan P, Dheer R. Probiotic dietary supplementation in patients with stage 3 and 4 chronic kidney disease: a 6-month pilot scale trial in Canada. Curr Med Res Opin. 2009;25(8):1919–30.

    Article  CAS  PubMed  Google Scholar 

  57. Ranganathan N, Ranganathan P, Friedman EA, Joseph A, Delano B, Goldfarb DS, et al. Pilot study of probiotic dietary supplementation for promoting healthy kidney function in patients with chronic kidney disease. Adv Ther. 2010;27(9):634–47.

    Article  PubMed  Google Scholar 

  58. Miranda Alatriste PV, Urbina AR, Gomez Espinosa CO, Espinosa Cuevas ML. Effect of probiotics on human blood urea levels in patients with chronic renal failure. Nutr Hosp. 2014;29(3):582–90.

    PubMed  Google Scholar 

  59. • Meijers BK, De PVV, Verbeke K, Vanrenterghem Y, Evenepoel P. P-cresyl sulfate serum concentrations in haemodialysis patients are reduced by the prebiotic oligofructose-enriched inulin. Nephrol Dial Transplant. 2010;25(1):219–24. This study reported successful reduction of uremic toxin p-cresyl sulfate in serum of ESRD patients who were trreated with the prebiotic inulin.

    Article  CAS  PubMed  Google Scholar 

  60. Sirich TL, Plummer NS, Gardner CD, Hostetter TH, Meyer TW. Effect of increasing dietary fiber on plasma levels of colon-derived solutes in hemodialysis patients. Clin J Am Soc Nephrol. 2014;9(9):1603–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Xie LM, Ge YY, Huang X, Zhang YQ, Li JX. Effects of fermentable dietary fiber supplementation on oxidative and inflammatory status in hemodialysis patients. Int J Clin Exp Med. 2015;8(1):1363–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Cruz-Mora J, Martinez-Hernandez NE, Martin DC-L, Viramontes-Horner D, Vizmanos-Lamotte B, Munoz-Valle JF, et al. Effects of a symbiotic on gut microbiota in Mexican patients with end-stage renal disease. J Ren Nutr. 2014;24(5):330–5.

    Article  PubMed  Google Scholar 

  63. Almeida CC, Lorena SL, Pavan CR, Akasaka HM, Mesquita MA. Beneficial effects of long-term consumption of a probiotic combination of Lactobacillus casei Shirota and Bifidobacterium breve Yakult may persist after suspension of therapy in lactose-intolerant patients. Nutr Clin Pract. 2012;27(2):247–51.

    Article  PubMed  Google Scholar 

  64. Guida B, Germano R, Trio R, Russo D, Memoli B, Grumetto L, et al. Effect of short-term synbiotic treatment on plasma p-cresol levels in patients with chronic renal failure: a randomized clinical trial. Nutr Metab Cardiovasc Dis. 2014;24(9):1043–9.

    Article  CAS  PubMed  Google Scholar 

  65. Pavan M. Influence of prebiotic and probiotic supplementation on the progression of chronic kidney disease. Minerva Urol Nefrol. 2016;68(2):222–6.

    PubMed  Google Scholar 

  66. Miyazaki T, Aoyama I, Ise M, Seo H, Niwa T. An oral sorbent reduces overload of indoxyl sulphate and gene expression of TGF-beta1 in uraemic rat kidneys. Nephrol Dial Transplant. 2000;15(11):1773–81.

    Article  CAS  PubMed  Google Scholar 

  67. Vaziri ND, Yuan J, Khazaeli M, Masuda Y, Ichii H, Liu S. Oral activated charcoal adsorbent (AST-120) ameliorates chronic kidney disease-induced intestinal epithelial barrier disruption. Am J Nephrol. 2013;37(6):518–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hatakeyama S, Yamamoto H, Okamoto A, Imanishi K, Tokui N, Okamoto T, et al. Effect of an oral adsorbent, AST-120, on dialysis initiation and survival in patients with chronic kidney disease. Int J Nephrol. 2012;2012:376128.

    PubMed  PubMed Central  Google Scholar 

  69. Schulman G, Berl T, Beck GJ, Remuzzi G, Ritz E, Arita K, et al. Randomized placebo-controlled EPPIC trials of AST-120 in CKD. J Am Soc Nephrol. 2015;26(7):1732–46.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

D.S.R. is supported by the National Institutes of Health grants 1R01DK073665-01A1, 1U01DK099924- 01, and 1U01DK099914-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Raj.

Ethics declarations

Conflict of Interest

Drs. Armani, Yasir, Sharama, Canziani, and Raj declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Sympathetic Nervous System, and Hypertension

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Armani, R.G., Ramezani, A., Yasir, A. et al. Gut Microbiome in Chronic Kidney Disease. Curr Hypertens Rep 19, 29 (2017). https://doi.org/10.1007/s11906-017-0727-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-017-0727-0

Keywords

Navigation