Skip to main content
Log in

Genetic rat models of hypertension: Relationship to human hypertension

  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Experimental models of human disease are frequently used to investigate the pathophysiology of disease as well as the mechanisms of action of therapeutics. However, as long as models have been used there have been debates about the utility of experimental models and their applicability for human disease on the phenotypic and genomic level. The recent advances in molecular genetics and genomics have provided powerful tools to study the genetics of multifactorial diseases, such as hypertension. However, studies of such diseases in humans remain challenging in part due to lack of statistical power and genetic heterogeneity within patient populations. For hypertension, various rat models have been developed and used for the identification of susceptibility loci for genetic hypertension. With the advent of "comparative genomics," the application of genetic studies to both human and animal model systems allows for a new paradigm, where comparative genomics can be used to bridge between model utility and clinical relevance. This review discusses recent approaches in genetics to facilitate gene discovery for polygenic disorders with specific focus on how comparative mapping can be used to select target regions in the human genome for large-scale association studies and linkage disequilibrium testing in clinical populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Ward R: Familial aggregation and genetic epidemiology of blood pressure. In Hypertension: Pathophysiology, Diagnosis and Management. Edited by Laragh JH, Brenner BM. New York: Raven Press Ltd; 1990:81–100.

    Google Scholar 

  2. Shimkets RA, Warnock DG, Bositis CM, et al.: Liddle’ syndrome: heritable human hypertension caused by mutations in the beta subunit of the epithelial sodium channel. Cell 1994, 79:407–414.

    Article  PubMed  CAS  Google Scholar 

  3. Lifton RP, et al. :A chimaeric 11b-hydroxylase/aldosterone synthase gene causes glucocorticoid-remediable aldosteronism and human hypertension. Nature 1992, 355:262–265.

    Article  PubMed  CAS  Google Scholar 

  4. Simon DB, Karet FE, Hamdan JM, et al.: Bartter’ syndrome, hypokalaemic alkalosis with hypercalciuria, is caused by mutations in the Na-K-2Cl co-transporter NKCC2. Nat Genet 1996, 13:183–188.

    Article  PubMed  CAS  Google Scholar 

  5. Simon DB, Karet FE, Rodriguez-Soriano J, et al.: Genetic heterogeneity of Bartter’ syndrome revealed by mutations in the K+ channel, ROMK. Nat Genet 1996, 14:152–156.

    Article  PubMed  CAS  Google Scholar 

  6. Hamet P, Pausova Z, Adarichev V, et al.: Hypertension: genes and environment. J Hypertens 1998, 16:397–418.

    Article  PubMed  CAS  Google Scholar 

  7. Stoll M, Jacob HJ: Improved strategies for the mapping of quantitative trait loci in the rat model. In Molecular Genetics of Hypertension. Edited by Dominiczak AF, Connell JMC, Soubrier F. Oxford: BIOS Scientific Publishers; 1999:31–52.

    Google Scholar 

  8. Rapp JP: Genetic analysis of inherited hypertension in the rat. Physiol Rev 2000, 80:135–172. This is a comprehensive review on strategies in the dissection of the genetics of hypertension and provides a comprehensive picture on QTL identified in various rat models for hypertension.

    PubMed  CAS  Google Scholar 

  9. Deng AY, Dene H, Rapp JP: Congenic strains for the blood pressure quantitative trait locus on rat chromosome 2. Hypertension 1997, 30:199–202.

    PubMed  CAS  Google Scholar 

  10. Frantz SA, Kaiser M, Gardiner SM, et al.: Successful isolation of a rat chromosome 1 blood pressure quantitative trait locus in reciprocal congenic strains. Hypertension 1998, 32:639–646.

    PubMed  CAS  Google Scholar 

  11. Garrett MR, Dene H, Walder R, et al.: Genome scan and congenic strains for blood pressure QTL using Dahl salt-sensitive rats. Genome Res 1998, 8:711–723.

    PubMed  CAS  Google Scholar 

  12. Hubner N, Lee YA, Lindpaintner K, et al.: Congenic substitution mapping excludes Sa as a candidate gene locus for a blood pressure quantitative trait locus on rat chromosome 1. Hypertension 1999, 34:643–648.

    PubMed  CAS  Google Scholar 

  13. Jiang J, Stec DE, Drummond H, et al.: Transfer of a saltresistant renin allele raises blood pressure in Dahl saltsensitive rats. Hypertension 1997, 29:619–627.

    PubMed  CAS  Google Scholar 

  14. St. Lezin E, Liu W, Wang N, et al.: Effect of renin gene transfer on blood pressure in the spontaneously hypertensive rat. Hypertension 1998, 31:373–377.

    PubMed  CAS  Google Scholar 

  15. Zhang QY, Dene H, Deng AY, et al.: Interval mapping and congenic strains for a blood pressure QTL on rat chromosome 13. Mamm Genome 1997, 8:636–641.

    Article  PubMed  CAS  Google Scholar 

  16. Aitman TJ, Gotoda T, Evans AL, et al.: Quantitative trait loci for cellular defects in glucose and fatty acid metabolism in hypertensive rats. Nat Genet 1997, 16:197–201.

    Article  PubMed  CAS  Google Scholar 

  17. Aitman TJ, Glazier AM, Wallace CA, et al.: Identification of Cd36 (Fat) as an insulin-resistance gene causing defective fatty acid and glucose metabolism in hypertensive rats. Nat Genet 1999, 21:76–83. This work describes the first successful cloning of a susceptibility factor for a multifactorial trait based on the initial identification of a quantitative trait followed by standard positional cloning approaches and expression profiling.

    Article  PubMed  CAS  Google Scholar 

  18. Nadeau JH, Frankel WN: The roads from phenotypic variation to gene discovery: mutagenesis versus QTLs. Nat Genet 2000, 25:381–384.

    Article  PubMed  CAS  Google Scholar 

  19. Brown DM, Provoost AP, Daly MJ, et al.: Renal disease susceptibility and hypertension are under independent genetic control in the fawn-hooded rat. Nat Genet 1996, 12:44–51.

    Article  PubMed  CAS  Google Scholar 

  20. Shiozawa M, Provoost AP, Dokkum RP, et al.: Evidence of gene-gene interactions in the genetic susceptibility to renal impairment after unilateral nephrectomy. J Am Soc Nephrol 2000, 11:2068–2078.

    PubMed  CAS  Google Scholar 

  21. Lifton RP: Molecular genetics of human blood pressure variation. Science 1996, 272:676–80.

    Article  PubMed  CAS  Google Scholar 

  22. O’Shaughnessy KM, Fu B, Johnson A, Gordon RD: Linkage of Gordon’ syndrome to the long arm of chromosome 17 in a region recently linked to familial essential hypertension. J Hum Hypertens 1998, 12:675–678.

    Article  PubMed  CAS  Google Scholar 

  23. Julier C, Delepine M, Keavney B, et al.: Genetic susceptibility for human familial essential hypertension in a region of homology with blood pressure linkage on rat chromosome 10. Hum Mol Genet 1997, 6:2077–2085.

    Article  PubMed  CAS  Google Scholar 

  24. Baima J, Nicolaou M, Schwartz F, et al.: Evidence for linkage between essential hypertension and a putative locus on human chromosome 17. Hypertension 1999, 34:4–7.

    PubMed  CAS  Google Scholar 

  25. Risch N, Merikangas K: The future of genetic studies of complex diseases. Science 1996, 273:1516–1517.

    Article  PubMed  CAS  Google Scholar 

  26. Wright S: The genetics of quantitative variability. In The Genetics of Human Population: A Treatise in Four Volumes. Chicago: University of Chicago Press; 1998:373–420.

    Google Scholar 

  27. Jeunemaitre X, Lifton RP, Hunt SC, et al.: Absence of linkage between the angiotensin converting enzyme locus and human essential hypertension. Nat Genet 1992, 1:72–75.

    Article  PubMed  CAS  Google Scholar 

  28. Jeunemaitre X, Soubrier F, Kotelevtsev YV, et al.: Molecular basis of human hypertension: role of angiotensinogen. Cell 1992, 71:169–180.

    Article  PubMed  CAS  Google Scholar 

  29. Caulfield M, Lavender P, Farrall M, et al.: Linkage of the angiotensinogen gene to essential hypertension. N Engl J Med 1994, 330:1629–1633.

    Article  PubMed  CAS  Google Scholar 

  30. Soubrier F, Jeunemaitre X, Rigat B, et al.: Similar frequencies of renin gene RFLP’ in hypertensives and normotensives. Hypertension 1990, 16:712–717.

    PubMed  CAS  Google Scholar 

  31. Harrap S, Davidson R, Connor J, et al.: The angiotensin I-converting enzyme gene and predisposition to high blood pressure in man. Hypertension 1993, 21:455–460.

    PubMed  CAS  Google Scholar 

  32. Iwai N, Ohmichi N, Hanai Y, et al.: Human SA gene locus as a candidate locus for essential hypertension. Hypertension 1994, 23:375–380.

    PubMed  CAS  Google Scholar 

  33. Nabika T, Bonnardeaux A, James M, et al.: Evaluation of the SA locus in human hypertension. Hypertension 1995, 25:6–13.

    PubMed  CAS  Google Scholar 

  34. Jacob HJ, Lindpaintner K, Lincoln SE, et al.: Genetic mapping of a gene causing hypertension in the stroke-prone spontaneously hypertensive rat. Cell 1991, 67:213–224.

    Article  PubMed  CAS  Google Scholar 

  35. Hilbert P, Lindpaintner K, Beckmann JS, et al.: Chromosomal mapping of two genetic loci associated with blood pressure regulations in hereditary hypertensive rats. Nature 1991, 353:521.

    Article  PubMed  CAS  Google Scholar 

  36. Staessen JA, Wang JG, Ginocchio G, et al.: The deletion/insertion polymorphism of the angiotensin converting enzyme gene and cardiovascular-renal risk. J Hypertens 1997, 15:1579–1592.

    Article  PubMed  CAS  Google Scholar 

  37. Deloukas P, Schuler GD, Gyapay G, et al.: A physical map of 30,000 human genes. Science 1998, 282:744–746.

    Article  PubMed  CAS  Google Scholar 

  38. Krushkal J, Ferrell R, Mockrin SC, et al.: Genome-wide linkage analyses of systolic blood pressure using highly discordant siblings. Circulation 1999, 99:1407–1410. This study reports multiple susceptibility loci for hypertension in humans that are homologous to regions identified in rodent models.

    PubMed  CAS  Google Scholar 

  39. Xu X, Rogus JJ, Terwedow HA, et al.: An extreme-sib-pair genome scan for genes regulating blood pressure. Am J Hum Genet 1999, 64:1694–1701.

    Article  PubMed  CAS  Google Scholar 

  40. Svetkey LP, Chen YT, McKeown SP, et al.: Preliminary evidence of linkage of salt sensitivity in black Americans at the beta 2-adrenergic receptor locus. Hypertension 1997, 29:918–922.

    PubMed  CAS  Google Scholar 

  41. Bleecker ER, Postma DS, Meyers DA: Evidence for multiple genetic susceptibility loci for asthma. Am J Respir Crit Care Med 1997, 156:S113–116.

    PubMed  CAS  Google Scholar 

  42. Hanis CL, Boerwinkle E, Chakraborty R, et al.: A genome-wide search for human non-insulin-dependent (type 2) diabetes genes reveals a major susceptibility locus on chromosome 2. Nat Genet 1996, 13:161–166.

    Article  PubMed  CAS  Google Scholar 

  43. Todd JA: Genetic analysis of type 1 diabetes using whole genome approaches. Proc Natl Acad Sci U S A 1995, 92:8560–8565.

    Article  PubMed  CAS  Google Scholar 

  44. Mansfield TA, Simon DB, Farfel Z, et al.: Multilocus linkage of familial hyperkalaemia and hypertension, pseudohypoaldosteronism type II, to chromosomes 1q31-42 and 17p11-q21. Nat Genet 1997, 16:202–205.

    Article  PubMed  CAS  Google Scholar 

  45. Krushkal J, Xiong M, Ferrell R, et al.: Linkage and association of adrenergic and dopamine receptor genes in the distal portion of the long arm of chromosome 5 with systolic blood pressure variation. Hum Mol Genet 1998, 7:1379–1383.

    Article  PubMed  CAS  Google Scholar 

  46. Bray MS, Krushkal J, Li L, et al.: Positional genomic analysis identifies the beta(2)-adrenergic receptor gene as a susceptibility locus for human hypertension. Circulation 2000, 101:2877–2882.

    PubMed  CAS  Google Scholar 

  47. Lander ES: The new genomics: global views of biology. Science 1996, 274:536–539.

    Article  PubMed  CAS  Google Scholar 

  48. Collins FS, Guyer MS, Charkravarti A: Variations on a theme: Cataloging human DNA sequence variation. Science 1997, 278:1580–1581.

    Article  PubMed  CAS  Google Scholar 

  49. Kruglyak L: The use of a genetic map of biallelic markers in linkage studies. Nat Genet 1997, 17:21–24.

    Article  PubMed  CAS  Google Scholar 

  50. DG, Fan J, Siao C, et al.: Large-scale identification, mapping, and genotyping of single nucleotide polymorphisms in the human genome. Science 1998, 280:1077–1081.

    Article  Google Scholar 

  51. Marshal E: Drug firms create public database of genetic mutations. Science 1999, 284:406–407.

    Article  Google Scholar 

  52. Cargill M, Altshuler D, Ireland J, et al.: Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat Genet 1999, 22:231–238.

    Article  PubMed  CAS  Google Scholar 

  53. Masood E: As consortium plans free SNP map of human genome. Nature 1999, 398:545–546.

    Article  PubMed  CAS  Google Scholar 

  54. Halushka MK, Fan JB, Bentley K, et al.: Patterns of singlenucleotide polymorphisms in candidate genes for bloodpressure homeostasis. Nat Genet 1999, 22:239–247.

    Article  PubMed  CAS  Google Scholar 

  55. Keavney B, McKenzie CA, Connell JM, et al.: Measured haplotype analysis of the angiotensin-I converting enzyme gene. Hum Mol Genet 1998, 7:1745–1751.

    Article  PubMed  CAS  Google Scholar 

  56. Rieder MJ, Taylor SL, Clark AJ, Nickerson DA: Sequence variation in the human angiotensin converting enzyme. Nat Genet 1999, 22:59–62.

    Article  PubMed  CAS  Google Scholar 

  57. Zhu X, McKenzie CA, Forrester T, et al.: Localization of a small genomic region associated with elevated ACE. Am J Hum Genet 2000, 67:1144–1153.

    PubMed  CAS  Google Scholar 

  58. Nickerson DA, Taylor SL, Weiss KM, et al.: DNA sequence diversity in a 9.7-kb region of the human lipoprotein lipase gene. Nat Genet 1998, 19:233–240.

    Article  PubMed  CAS  Google Scholar 

  59. Templeton AR, Weiss KM, Nickerson DA, et al.: Cladistic structure within the human lipoprotein lipase gene and its implications for phenotypic association studies. Genetics 2000, 156:1259–1275.

    PubMed  CAS  Google Scholar 

  60. Horikawa Y, Oda N, Cox NJ, et al.: Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus. Nat Genet 2000, 26:163–175. This work describes the first successful identification of a susceptibility factor for type 2 diabetes mellitus based on results from genomewide scans followed by linkage disequilibrium analysis using SNPs.

    Article  PubMed  CAS  Google Scholar 

  61. Steen RG, Kwitek-Black AE, Glenn C, et al.: A high-density integrated genetic linkage and radiation hybrid map of the laboratory rat. Genome Res 1999, 9:1–8.

    Google Scholar 

  62. Watanabe TK, Bihoreau MT, McCarthy LC, et al.: A radiation hybrid map of the rat genome containing 5,255 markers. Nat Genet 1999, 22:27–36.

    Article  PubMed  CAS  Google Scholar 

  63. Van Etten WJ, Steen RG, Nguyen H, et al.: Radiation hybrid map of the mouse genome. Nat Genet 1999, 22:384–387.

    Article  PubMed  CAS  Google Scholar 

  64. Nusbaum C, Slonim DK, Harris KL, et al.: A YAC-based physical map of the mouse genome. Nat Genet 1999, 22:388–393.

    Article  PubMed  CAS  Google Scholar 

  65. Osoegawa K, Woon PY, Zhao B, et al.: An improved approach for construction of bacterial artificial chromosome libraries. Genomics 1998, 52:1–8.

    Article  PubMed  CAS  Google Scholar 

  66. Woon PY, Osoegawa K, Kaisaki PJ, et al.: Construction and characterization of a 10-fold genome equivalent rat P1-derived artificial chromosome library. Genomics 1998, 50:306–316.

    Article  PubMed  CAS  Google Scholar 

  67. Stoll M, Kwitek-Black AE, Cowley AWJr, et al.: New target regions for human hypertension via comparative genomics. Genome Res 2000, 10:473–482. First description of the utility of QTL identified in rodent models for the prediction of susceptibility regions in the human genome.

    Article  PubMed  CAS  Google Scholar 

  68. Brown DM, TC, Koike G, et al.: An integrated genetic linkage map of the laboratory rat. Mamm Genome 1998, 9:521–530.

    Article  PubMed  CAS  Google Scholar 

  69. Wright FA, O’Connor DT, Roberts E, et al.: Genome scan for blood pressure loci in mice. Hypertension 1999, 34:625–630. First publication on QTL for blood pressure in mice.

    PubMed  CAS  Google Scholar 

  70. Sugiyama F, Churchhill GA, Higgins DC, et al.: Concordance of murine quantitative trait loci for salt-induced hypertension with rat and human loci. Genomics 2001, in press.

  71. Levy D, DeStefano AL, Larson MG, et al.: Evidence for a gene influencing blood pressure on chromosome 17: genome scan linkage results for longitudinal blood pressure phenotypes in subjects from the framingham heart study. Hypertension 2000, 36:477–483.

    PubMed  CAS  Google Scholar 

  72. Rice T, Rankinen T, Province MA, et al.: Genome-wide linkage analysis of systolic and diastolic blood pressure: The Quebec family study. Circulation 2000, 102:1956–1963.

    PubMed  CAS  Google Scholar 

  73. Schork NJ, Krieger JE, Trolliet M, et al.: A biometrical genome search in rats reveals the multigenic basis of blood pressure variation. Genome Res 1995, 5:164–172.

    PubMed  CAS  Google Scholar 

  74. Dubay C, Vincent M, Samani NJ, et al.: Genetic determinants of diastolic and pulse pressure map to different loci in Lyon hypertensive rats. Nat Genet 1993, 3:354–357.

    Article  PubMed  CAS  Google Scholar 

  75. Rapp JP, Garrett MR, Dene H, et al.: Linkage analysis and construction of a congenic strain for a blood pressure QTL on rat chromosome 9. Genomics 1998, 51:191–196.

    Article  PubMed  CAS  Google Scholar 

  76. Kato N, Hyne G, Bihoreau MT, et al.: Complete genome searches for quantitative trait loci controlling blood pressure and related traits in four segregating populations derived from Dahl hypertensive rats. Mamm Genome 1999, 10:259–265.

    Article  PubMed  CAS  Google Scholar 

  77. Kurtz TW, Simonet L, Kabra PM, et al.: Cosegregation of the renin allele of the spontaneously hypertensive rat with an increase in blood pressure. J Clin Invest 1990, 85:1328–1332.

    PubMed  CAS  Google Scholar 

  78. Pravenec M, Simonet L, Kren V, et al.: The rat renin gene: assignment to chromosome 13 and linkage to the regulation of blood pressure. Genomics 1991, 9:466–472.

    Article  PubMed  CAS  Google Scholar 

  79. Deng AY, Dene H, Pravenec M, Rapp JP: Genetic mapping of two new blood pressure quantitative trait loci in the rat by genotyping endothelin system genes. J Clin Invest 1994, 93: 2701–2709.

    Article  PubMed  CAS  Google Scholar 

  80. Garrett MR, Dene H, Walder R, et al.: Genome scan and congenic strains for blood pressure QTL using Dahl salt-sensitive rats. Genome Res 1998, 8:711–723.

    PubMed  CAS  Google Scholar 

  81. Curnow, KM, Slutsker L, Vitek J, et al.: Mutations in the CYP11B1 gene causing congenital adrenal hyperplasia and hypertension cluster in exons 6, 7, and 8. Proc Natl Acad Sci U S A 1993, 90:4552–4556.

    Article  PubMed  CAS  Google Scholar 

  82. Cicila GT, Rapp JP, Wang JM, et al.: Linkage of 11 betahydroxylase mutations with altered steroid biosynthesis and blood pressure in the Dahl rat. Nat Genet 1993, 3:346–353.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stoll, M., Jacob, H.J. Genetic rat models of hypertension: Relationship to human hypertension. Current Science Inc 3, 157–164 (2001). https://doi.org/10.1007/s11906-001-0031-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-001-0031-9

Keywords

Navigation