Skip to main content
Log in

Interval mapping and congenic strains for a blood pressure QTL on rat Chromosome 13

  • Original Contribution
  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

The rerun locus (Ren) on rat Chromosome (Chr) 13 had previously been shown to cosegregate with blood pressure in crosses involving Dahl salt-sensitive (S) and Dahl salt-resistant (R) rats. In the present work, interval mapping of blood pressure on Chr 13 with a large F2 (S x R), n = 233, population yielded a maximum LOD = 4.2 for linkage to blood pressure, but the quantitative trait locus (QTL) was only poorly localized to a large 35-centiMorgan (cM) segment of Chr 13. In the linkage analysis, the S-rat QTL allele (S) was associated with higher, and the R-rat QTL allele (R) with lower blood pressure, the difference between homozygotes being about 20 mm Hg. A congenic strain was made by introgressing the R-rat Ren allele into the recipient S strain. This congenic strain showed a 24 mm Hg reduction (P = 0.004) in blood pressure compared with S rats for rats fed 2% NaCl diet for 24 days; this difference was confirmed by two other independent tests. Two congenic substrains were derived from the first congenic strain with shorter R Chr 13 segments on the S background. Comparisons among these congenic strains showed that a blood pressure QTL was in the 24-cM chromosomal segment between Syt2 and D13M1Mit108. This segment does not include the renin locus, which is thus excluded from being the gene on rat Chr 13 responsible for genetic differences in blood pressure detected by linkage analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alam KY, Wang Y, Dene H, Rapp JP (1993) Renin gene nucleotide sequence of coding and regulatory regions in Dahl rats. Clin Exp Hypertens 15, 599–614

    Article  PubMed  CAS  Google Scholar 

  • Blin N, Stafford DW (1976) Isolation of high-molecular-weight DNA. Nucleic Acids Res 3, 2303–2308

    PubMed  CAS  Google Scholar 

  • Bunag RD, Butterfield J (1982) Tail-cuff blood pressure measurement without external preheating in awake rats. Hypertension (Dallas) 4, 898–903

    CAS  Google Scholar 

  • Cicila GT, Rapp JP, Wang J-M, St. Lezin E, Ng SC, Kurtz TW (1993) Linkage of 11β -hydroxylase mutations with altered steroid biosynthesis and blood pressure in the Dahl rat. Nature Genet 3, 346–353

    Article  PubMed  CAS  Google Scholar 

  • Cicila GT, Rapp JP, Bloch KD, Kurtz TW, Pravenec M, Kren V, Hong CC, Quertermous T, Ng SC (1994) Cosegregation of the endothelin-3 locus with blood pressure and relative heart weight in inbred Dahl rats. J Hypertens 12, 643–651

    Article  PubMed  CAS  Google Scholar 

  • Darvasi A, Weinreb A, Minke V, Weller JI, Soller M (1993) Detecting marker-QTL linkage and estimating QTL gene effect and map location using a saturated genetic map. Genetics 134, 943–951

    PubMed  CAS  Google Scholar 

  • Dubay C, Vincent M, Samani NJ, Hilbert P, Kaiser MA, Beressi JP, Kotelevtsev Y, Beckmann JS, Soubrier F, Sassard J, Lathrop GM (1993) Genetic determinants of diastolic and pulse pressure map to different loci in Lyon hypertensive rats. Nature Genet 3, 354–357

    Article  PubMed  CAS  Google Scholar 

  • Green EL (1981) Genetics and Probability in Animal Breeding Experiments (Oxford University Press, New York) p 24

    Google Scholar 

  • Harris EL, Phelan E, Thompson CM, Millar JA, Grigor MR (1995) Heart mass and blood pressure have separate genetic determinants in the New Zealand genetically hypertensive (GH) rat. J. Hypertens 13, 397–404

    Article  PubMed  CAS  Google Scholar 

  • Hyne V, Kearsey MJ, Pike DJ, Snape JW (1995) QTL analysis: unreliability and bias in estimation procedures. Mol Breed 1, 273–282

    Article  Google Scholar 

  • Jacob HJ, Brown DM, Bunker RK, Daly MJ, Dzau VJ, Goodman A, Koike G, Kren V, Kurtz T, Lernmark A, Levan G, Mao Y-P, Petterson A, Pravenec M, Simon JS, Szpirer C, Szpirer J, Trolliet MR, Winer ES, Lander ES (1995) A genetic linkage map of the laboratory rat, Rattus norvegicus. Nature Genet 9, 63–69

    Article  PubMed  CAS  Google Scholar 

  • Jiang J, Stec DE, Drummond H, Simon JS, Koike G, Jacob HJ, Roman RJ (1997) Transfer of a salt-resistant renin allele raises blood pressure in Dahl salt-sensitive rats. Hypertension (Dallas) 19, 619–627

    Google Scholar 

  • Kuramoto T, Mori M, Hirayama N, Saburi S, Yamada J, Serikawa T (1993). A strategy for rapid construction of genetic and physical maps in the rat. Acta Histochem Cytochem 26, 325–332

    CAS  Google Scholar 

  • Kurtz TW, Simonet L, Kabra PM, Wolfe S, Chan L, Hjelle BL (1990) Cosegregation of the renin allele of the spontaneously hypertensive rat with an increase in blood pressure. J Clin Invest 85, 1328–1332

    Article  PubMed  CAS  Google Scholar 

  • Lander EP, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 12, 185–199

    Google Scholar 

  • Lander EP, Green P, Abrahamson J, Barrow A, Daly MJ (1987) MAP- MAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1, 174–181

    Article  PubMed  CAS  Google Scholar 

  • Lewis JL, Russell RJ, Warnock DG (1994) Analysis of the genetic contamination of salt-sensitive Dahl/Rapp rats. Hypertension (Dallas) 24 255–259

    CAS  Google Scholar 

  • Lincoln S, Daly M, Lander E (1992a) Mapping genes controlling quantitative traits with Mapmaker/QTL 1.1. Whitehead Institute Technical Report, 2nd ed.

  • Lincoln S, Daly M, Lander E (1992b) Constructing genetic maps with Mapmaker/Exp 3.0. Whitehead Institute Technical Report, 3rd ed.

  • Orita MY, Iwahara H, Kanazawa H, Hayashi K, Sekiya T (1989a) Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci USA 86, 2766–2770

    Article  PubMed  CAS  Google Scholar 

  • Orita MY, Suzuki Y, Sekiya T, Hayashi K (1989b) Rapid and sensitive detection of point mutations and DNA polymorphism using the polymerase chain reaction. Genomics 5, 874–879

    Article  PubMed  CAS  Google Scholar 

  • Paterson A, Lander E, Lincoln S, Hewitt J, Peterson S, Tanksley S (1988) Resolution of quantitative traits into Mendelian factors using a complete RFLP linkage map. Nature 335, 721–726

    Article  PubMed  CAS  Google Scholar 

  • Pravenec M, Simonet L, Kren V, Kunes J, Levan G, Szpirer J, Szpirer C, Kurtz T (1991) The rat renin gene: assignment to chromosome 13 and linkage to the regulation of blood pressure. Genomics 9, 466–472

    Article  PubMed  CAS  Google Scholar 

  • Rapp JP, Dene H (1985) Development and characteristics of inbred strains of Dahl salt-sensitive and salt-resistant rats. Hypertension (Dallas) 7, 340–349

    CAS  Google Scholar 

  • Rapp JP, Deng AY (1995) Detection and positional cloning of blood pressure quantitative trait loci: is it possible? Hypertension (Dallas) 25, 1121–1128

    CAS  Google Scholar 

  • Rapp JP, Wang SM, Dene H (1989) A genetic polymorphism in the renin gene of Dahl rats cosegregates with blood pressure. Science 243, 542–544

    Article  PubMed  CAS  Google Scholar 

  • Rapp JP, Wang SM, Dene H (1990) Effect of genetic background on cosegregation of renin alleles and blood pressure in Dahl rats. Am J Hypertens 3, 391–396

    PubMed  CAS  Google Scholar 

  • Rapp JP, Dene H, Deng A (1994) Seven renin alleles in rats and their effects on blood pressure. J Hypertens 12, 349–355

    Article  PubMed  CAS  Google Scholar 

  • Remmers EF, Goldmuntz EA, Zha HB, Mathern P, Du Y, Crofford LJ, Wilder RL (1993) Linkage map of nine loci defined by polymorphic DNA markers assigned to rat chromosome 13. Genomics 18, 277–282

    Article  PubMed  CAS  Google Scholar 

  • Samani NJ, Gauguier D, Vincent M, Kaiser MA, Bihoreau M-T, Lodwick D, Wallis R, Parent V, Kimber P, Rattray F, Thompson JR, Sassard J, Lathrop M (1996) Analysis of quantitative trait loci for blood pressure on rat chromosomes 2 and 13. Hypertension (Dallas) 28, 1118–1122

    CAS  Google Scholar 

  • Serikawa T, Kuramoto T, Hilbert P, Mori M, Yamada J, Dubay CJ, Lind-paintner K, Ganten D, Guenet JL, Lathrop GM, Beckmann JS (1992) Rat gene mapping using PCR-analyzed microsatellites. Genetics 131, 701–721

    PubMed  CAS  Google Scholar 

  • Silver LM (1995) Mouse Genetics. Concepts and Applications. (New York: Oxford University Press), pp 43–19

    Google Scholar 

  • St. Lezin EM, Pravenec M, Wong A, Wang J-M, Merriouns T, Newton S, Stec DE, Roman RJ, Lau D, Morris Jr RC, Kurtz TW (1994) Genetic contamination of Dahl SS/Jr rats. Hypertension (Dallas) 23, 786–790

    CAS  Google Scholar 

  • St. Lezin EM, Pravenic M, Wong AL, Liu W, Wang N, Lu S, Jacob HJ, Roman RJ, Stec DE, Wang JM, Reid IA, Kurtz TW (1996) Effects of renin gene transfer on blood pressure and renin gene expression in a congenic strain of Dahl salt-resistant rats. J Clin Invest 97, 522–527

    Article  PubMed  CAS  Google Scholar 

  • Sun L, McArdle S, Chun M, Wolff DW, Pettinger WA (1993) Cosegregation of the renin gene with an increase in mean arterial blood pressure in the F2 rats of SHR-WKY cross. Clin Exp Hypertens 15, 797–805

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Q.Y., Dene, H., Deng, A.Y. et al. Interval mapping and congenic strains for a blood pressure QTL on rat Chromosome 13. Mammalian Genome 8, 636–641 (1997). https://doi.org/10.1007/s003359900528

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s003359900528

Keywords

Navigation