Skip to main content

Advertisement

Log in

2015 Guidelines for Establishing Genetically Modified Rat Models for Cardiovascular Research

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

The rat has long been a key physiological model for cardiovascular research, most of the inbred strains having been previously selected for susceptibility or resistance to various cardiovascular diseases (CVD). These CVD rat models offer a physiologically relevant background on which candidates of human CVD can be tested in a more clinically translatable experimental setting. However, a diverse toolbox for genetically modifying the rat genome to test molecular mechanisms has only recently become available. Here, we provide a high-level description of several strategies for developing genetically modified rat models of CVD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aitman, T. J., et al. (2008). Progress and prospects in rat genetics: a community view. Nature Genetics, 40(5), 516–522.

    Article  CAS  PubMed  Google Scholar 

  2. Katter, K., et al. (2013). Transposon-mediated transgenesis, transgenic rescue, and tissue-specific gene expression in rodents and rabbits. FASEB Journal, 27(3), 930–941.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Mullins, J. J., Peters, J., & Ganten, D. (1990). Fulminant hypertension in transgenic rats harbouring the mouse Ren-2 gene. Nature, 344(6266), 541–544.

    Article  CAS  PubMed  Google Scholar 

  4. Lu, B., et al. (2007). Generation of rat mutants using a coat color-tagged Sleeping Beauty transposon system. Mammalian Genome, 18(5), 338–346.

    Article  CAS  PubMed  Google Scholar 

  5. Kitada, K., et al. (2007). Transposon-tagged mutagenesis in the rat. Nature Methods, 4(2), 131–133.

    Article  CAS  PubMed  Google Scholar 

  6. Geurts, A. M., et al. (2009). Knockout rats via embryo microinjection of zinc-finger nucleases. Science, 325(5939), 433.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Tesson, L., et al. (2011). Knockout rats generated by embryo microinjection of TALENs. Nature Biotechnology, 29(8), 695–696.

    Article  CAS  PubMed  Google Scholar 

  8. Li, D., et al. (2013). Heritable gene targeting in the mouse and rat using a CRISPR-Cas system. Nature Biotechnology, 31(8), 681–683.

    Article  CAS  PubMed  Google Scholar 

  9. Li, W., et al. (2013). Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems. Nature Biotechnology, 31(8), 684–686.

    Article  CAS  PubMed  Google Scholar 

  10. Ma, Y., et al. (2014). Generating rats with conditional alleles using CRISPR/Cas9. Cell Research, 24(1), 122–125.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Kobayashi, T., et al. (2012). Identification of rat Rosa26 locus enables generation of knock-in rat lines ubiquitously expressing tdTomato. Stem Cells and Development, 21(16), 2981–2986.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Cui, X., et al. (2011). Targeted integration in rat and mouse embryos with zinc-finger nucleases. Nature Biotechnology, 29(1), 64–67.

    Article  CAS  PubMed  Google Scholar 

  13. Tong, C., et al. (2010). Production of p53 gene knockout rats by homologous recombination in embryonic stem cells. Nature, 467(7312), 211–213.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. (2010) Rat genomics methods and protocols. Methods in molecular biology, ed. I. Anegon. Vol. 597. Springer Science.

  15. Tong, C., et al. (2011). Generating gene knockout rats by homologous recombination in embryonic stem cells. Nature Protocols, 6(6), 827–844.

    Article  CAS  PubMed  Google Scholar 

  16. Ivics, Z., et al. (2014). Germline transgenesis in rodents by pronuclear microinjection of Sleeping Beauty transposons. Nature Protocols, 9(4), 773–793.

    Article  CAS  PubMed  Google Scholar 

  17. Flister, M. J., et al. (2013). Identifying multiple causative genes at a single GWAS locus. Genome Research, 23(12), 1996–2002.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Endres, B. T., et al. (2014). Mutation of Plekha7 attenuates salt-sensitive hypertension in the rat. Proceedings of the National Academy of Sciences of the United States of America, 111(35), 12817–12822.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Rangel-Filho, A., et al. (2013). Rab38 modulates proteinuria in model of hypertension-associated renal disease. Journal of the American Society of Nephrology, 24(2), 283–292.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Bader, M. (2010). Rat models of cardiovascular diseases. Methods in Molecular Biology, 597, 403–414.

    PubMed  Google Scholar 

  21. Shimoyama, M., et al. (2015). The Rat Genome Database 2015: genomic, phenotypic and environmental variations and disease. Nucleic Acids Research, 43(Database issue), D743–D750.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Smith, J. R., et al. (2013). The clinical measurement, measurement method and experimental condition ontologies: expansion, improvements and new applications. Journal of Biomedical Semantics, 4(1), 26.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Serikawa, T., et al. (2009). National BioResource Project-Rat and related activities. Experimental Animals, 58(4), 333–341.

    Article  CAS  PubMed  Google Scholar 

  24. Cowley, A. W., Jr., Roman, R. J., & Jacob, H. J. (2004). Application of chromosomal substitution techniques in gene-function discovery. Journal of Physiology, 554(Pt 1), 46–55.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Kwitek, A. E., et al. (2006). BN phenome: detailed characterization of the cardiovascular, renal, and pulmonary systems of the sequenced rat. Physiological Genomics, 25(2), 303–313.

    Article  CAS  PubMed  Google Scholar 

  26. Mattson, D. L., et al. (2007). Chromosomal mapping of the genetic basis of hypertension and renal disease in FHH rats. American Journal of Physiology. Renal Physiology, 293(6), F1905–F1914.

    Article  CAS  PubMed  Google Scholar 

  27. Mattson, D. L., et al. (2008). Chromosome substitution reveals the genetic basis of Dahl salt-sensitive hypertension and renal disease. American Journal of Physiology. Renal Physiology, 295(3), F837–F842.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Laulederkind, S. J., et al. (2013). PhenoMiner: quantitative phenotype curation at the rat genome database. Database (Oxford), 2013, bat015.

    Article  Google Scholar 

  29. Nigam, R., et al. (2013). Rat Genome Database: a unique resource for rat, human, and mouse quantitative trait locus data. Physiological Genomics, 45(18), 809–816.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Laulederkind, S. J., et al. (2012). Exploring genetic, genomic, and phenotypic data at the rat genome database. Current Protocols in Bioinformatics, 1, Unit1.14.

    PubMed  Google Scholar 

  31. Atanur, S. S., et al. (2013). Genome sequencing reveals loci under artificial selection that underlie disease phenotypes in the laboratory rat. Cell, 154(3), 691–703.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Flister, M. J., et al. (2014). CXM: a new tool for mapping breast cancer risk in the tumor microenvironment. Cancer Research, 74(22), 6419–6429.

    Article  CAS  PubMed  Google Scholar 

  33. Gibbs, R. A., et al. (2004). Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature, 428(6982), 493–521.

    Article  CAS  PubMed  Google Scholar 

  34. Adzhubei, I., Jordan, D. M., & Sunyaev, S. R. (2013). Predicting functional effect of human missense mutations using PolyPhen-2. Current Protocols in Human Genetics, 7, Unit7.20.

    PubMed  Google Scholar 

  35. Yu, Y., et al. (2014). A rat RNA-Seq transcriptomic BodyMap across 11 organs and 4 developmental stages. Nature Communications, 5, 3230.

    PubMed Central  PubMed  Google Scholar 

  36. Bhave, S. V., et al. (2007). The PhenoGen informatics website: tools for analyses of complex traits. BMC Genetics, 8, 59.

    Article  PubMed Central  PubMed  Google Scholar 

  37. (2010) Breakthrough of the year. The runners-up. Science. 330(6011): 1605–7.

  38. (2012) Method of the year 2011. Nat Meth 9(1): 1.

  39. (2012) The runners-up. Science. 338(6114): 1525–1532.

  40. Buehr, M., et al. (2008). Capture of authentic embryonic stem cells from rat blastocysts. Cell, 135(7), 1287–1298.

    Article  CAS  PubMed  Google Scholar 

  41. Kawamata, M., & Ochiya, T. (2010). Establishment of embryonic stem cells from rat blastocysts. Methods in Molecular Biology, 597, 169–177.

    CAS  PubMed  Google Scholar 

  42. Meek, S., et al. (2010). Efficient gene targeting by homologous recombination in rat embryonic stem cells. PLoS One, 5(12), e14225.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Tong, C., et al. (2010) Production of p53 gene knockout rats by homologous recombination in embryonic stem cells. Nature.

  44. Tong, C., et al. (2012). Rapid and cost-effective gene targeting in rat embryonic stem cells by TALENs. Journal of Genetics and Genomics, 39(6), 275–280.

    Article  CAS  PubMed  Google Scholar 

  45. Yamamoto, S., et al. (2012). Derivation of rat embryonic stem cells and generation of protease-activated receptor-2 knockout rats. Transgenic Research, 21(4), 743–755.

    Article  CAS  PubMed  Google Scholar 

  46. Atanur, S. S., et al. (2010). The genome sequence of the spontaneously hypertensive rat: analysis and functional significance. Genome Research, 20(6), 791–803.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Keane, T. M., et al. (2011). Mouse genomic variation and its effect on phenotypes and gene regulation. Nature, 477(7364), 289–294.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Gupta, R. M., & Musunuru, K. (2014). Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR-Cas9. The Journal of Clinical Investigation, 124(10), 4154–4161.

    Article  CAS  PubMed  Google Scholar 

  49. Ran, F. A., et al. (2013). Genome engineering using the CRISPR-Cas9 system. Nature Protocols, 8(11), 2281–2308.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Pattanayak, V., J.P. Guilinger, and D.R. Liu. (2014) Chapter three—determining the specificities of TALENs, Cas9, and other genome-editing enzymes, in Methods in enzymology, A.D. Jennifer and J.S. Erik, Editors. Academic Press. p. 47–78.

  51. Jones, J. M., & Meisler, M. H. (2014). Modeling human epilepsy by TALEN targeting of mouse sodium channel Scn8a. Genesis, 52(2), 141–148.

    Article  CAS  PubMed  Google Scholar 

  52. Fujii, W., et al. (2013). Efficient generation of large-scale genome-modified mice using gRNA and CAS9 endonuclease. Nucleic Acids Research, 41(20), e187–e187.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Mashiko, D., et al. (2013). Generation of mutant mice by pronuclear injection of circular plasmid expressing Cas9 and single guided RNA. Scientific Reports, 3.

  54. Wu, Y., et al. (2013). Correction of a genetic disease in mouse via Use of CRISPR-Cas9. Cell Stem Cell, 13(6), 659–662.

    Article  CAS  PubMed  Google Scholar 

  55. Zhou, J., et al. (2014). Dual sgRNAs facilitate CRISPR/Cas9-mediated mouse genome targeting. FEBS Journal, 281(7), 1717–1725.

    Article  CAS  PubMed  Google Scholar 

  56. Yang, H., et al. (2013). One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell, 154(6), 1370–1379.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Tsai, S. Q., et al. (2014). Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nature Biotechnology, 32(6), 569–576.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Geurts, A. M., et al. (2010). Generation of gene-specific mutated rats using zinc-finger nucleases. Methods in Molecular Biology, 597, 211–225.

    CAS  PubMed  Google Scholar 

  59. Ma, Y., et al. (2014). Generation of eGFP and Cre knockin rats by CRISPR/Cas9. FEBS Journal, 281(17), 3779–3790.

    Article  CAS  PubMed  Google Scholar 

  60. Brown, A. J., et al. (2013). Whole-rat conditional gene knockout via genome editing. Nature Methods, 10(7), 638–640.

    Article  CAS  PubMed  Google Scholar 

  61. Inui, M., et al. (2014). Rapid generation of mouse models with defined point mutations by the CRISPR/Cas9 system. Scientific Reports, 4.

  62. Wefers, B., et al. (2013). Direct production of mouse disease models by embryo microinjection of TALENs and oligodeoxynucleotides. Proceedings of the National Academy of Sciences of the United States of America, 110(10), 3782–3787.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Meyer, M., et al. (2012). Modeling disease mutations by gene targeting in one-cell mouse embryos. Proceedings of the National Academy of Sciences of the United States of America, 109(24), 9354–9359.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Meyer, M., et al. (2010). Gene targeting by homologous recombination in mouse zygotes mediated by zinc-finger nucleases. Proceedings of the National Academy of Sciences of the United States of America, 107(34), 15022–15026.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Weber, T., et al. (2011). Inducible gene manipulations in brain serotonergic neurons of transgenic rats. PLoS One, 6(11), e28283.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Filipiak, W. E., & Saunders, T. L. (2006). Advances in transgenic rat production. Transgenic Research, 15(6), 673–686.

    Article  CAS  PubMed  Google Scholar 

  67. Schonig, K., et al. (2011). Development of a BAC vector for integration-independent and tight regulation of transgenes in rodents via the Tet system. Transgenic Research, 20(3), 709–720.

    Article  PubMed  Google Scholar 

  68. Witten, I. B., et al. (2011). Recombinase-driver rat lines: tools, techniques, and optogenetic application to dopamine-mediated reinforcement. Neuron, 72(5), 721–733.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Takahashi, R., & Ueda, M. (2010). Generation of transgenic rats using YAC and BAC DNA constructs. Methods in Molecular Biology, 597, 93–108.

    CAS  PubMed  Google Scholar 

  70. Schonig, K., et al. (2012). Conditional gene expression systems in the transgenic rat brain. BMC Biology, 10, 77.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Pfeifer, A. (2004). Lentiviral transgenesis. Transgenic Research, 13(6), 513–522.

    Article  CAS  PubMed  Google Scholar 

  72. Michalkiewicz, M., et al. (2007). Efficient transgenic rat production by a lentiviral vector. American Journal of Physiology - Heart and Circulatory Physiology, 293(1), H881–H894.

    Article  CAS  PubMed  Google Scholar 

  73. Rostovskaya, M., et al. (2012). Transposon-mediated BAC transgenesis in human ES cells. Nucleic Acids Research, 40(19), e150.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Li, P., et al. (2008). Germline competent embryonic stem cells derived from rat blastocysts. Cell, 135(7), 1299–1310.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Men, H., Bauer, B. A., & Bryda, E. C. (2012). Germline transmission of a novel rat embryonic stem cell line derived from transgenic rats. Stem Cells and Development, 21(14), 2606–2612.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Men, H., & Bryda, E. C. (2013). Derivation of a germline competent transgenic Fischer 344 embryonic stem cell line. PLoS One, 8(2), e56518.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Blair, K., et al. (2012). Culture parameters for stable expansion, genetic modification and germline transmission of rat pluripotent stem cells. Biology Open, 1(1), 58–65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Hamra, F. K., et al. (2005). Self renewal, expansion, and transfection of rat spermatogonial stem cells in culture. Proceedings of the National Academy of Sciences of the United States of America, 102(48), 17430–17435.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Compliance with Ethical Standards

This article does not contain any studies with animals or human participants performed by any of the authors.

Funding

This work was supported in part by R01CA193343 (M.J. Flister), K01ES025435 (J.W. Prokop), and DP2OD008396 (A.M. Geurts).

Conflict of Interest

The authors have no personal conflicts of interest to disclose. The Medical College of Wisconsin could one day receive royalties on sales of genetically modified rat strains through a license agreement with Sigma Advanced Genetic Engineering (SAGE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Flister.

Additional information

Associate Editor Lorrie Kirshenbaum oversaw the review of this article

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flister, M.J., Prokop, J.W., Lazar, J. et al. 2015 Guidelines for Establishing Genetically Modified Rat Models for Cardiovascular Research. J. of Cardiovasc. Trans. Res. 8, 269–277 (2015). https://doi.org/10.1007/s12265-015-9626-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-015-9626-4

Keywords

Navigation