Skip to main content

Advertisement

Log in

Vitamin D bioavailability and catabolism in pediatric chronic kidney disease

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Background

Vitamin D-binding protein (DBP) and catabolism have not been examined in the clinical setting of childhood chronic kidney disease (CKD).

Methods

The concentrations of serum vitamin D {25-hydroxyvitamin D [25(OH)D], 1,25-dihydroxyvitamin D [1,25(OH)2D], 24,25-dihydroxyvitamin D [24,25(OH)2D]}, DBP, intact parathyroid hormone (iPTH), and fibroblast growth factor-23 (FGF23) were measured in 148 participants with CKD stages 2–5D secondary to congenital anomalies of the kidney/urinary tract (CAKUT), glomerulonephritis (GN), or focal segmental glomerulosclerosis (FSGS). Free and bioavailable 25(OH)D concentrations were calculated using total 25(OH)D, albumin, and DBP concentrations.

Results

The concentrations of all vitamin D metabolites were lower with more advanced CKD (p < 0.001) and glomerular diagnoses (p ≤ 0.002). Among non-dialysis participants, DBP was lower in FSGS versus other diagnoses (FSGS–dialysis interaction p = 0.02). Winter season, older age, FSGS and GN, and higher FGF23 concentrations were independently associated with lower concentrations of free and bioavailable 25(OH)D. Black race was associated with lower total 25(OH)D and DBP, but not free or bioavailable 25(OH)D. 24,25(OH)2D was the vitamin D metabolite most strongly associated with iPTH. Lower 25(OH)D and higher iPTH concentrations, black race, and greater CKD severity were independently associated with lower levels of 24,25(OH)2D, while higher FGF23 concentrations and GN were associated with higher levels of 24,25(OH)2D.

Conclusions

Children with CKD exhibit altered catabolism and concentrations of DBP and free and bioavailable 25(OH)D, and there is an important impact of their underlying disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ali FN, Arguelles LM, Langman CB, Price HE (2009) Vitamin D deficiency in children with chronic kidney disease: uncovering an epidemic. Pediatrics 123:791–796

    Article  PubMed  Google Scholar 

  2. Belostotsky V, Mughal MZ, Berry JL, Webb NJ (2008) Vitamin D deficiency in children with renal disease. Arch Dis Child 93:959–962

    Article  PubMed  CAS  Google Scholar 

  3. Hari P, Gupta N, Hari S, Gulati A, Mahajan P, Bagga A (2010) Vitamin D insufficiency and effect of cholecalciferol in children with chronic kidney disease. Pediatr Nephrol 25:2483–2488

    Article  PubMed  Google Scholar 

  4. Kalkwarf HJ, Denburg MR, Strife CF, Zemel BS, Foerster DL, Wetzsteon RJ, Leonard MB (2012) Vitamin D deficiency is common in children and adolescents with chronic kidney disease. Kidney Int 81:690–697

    Article  PubMed  CAS  Google Scholar 

  5. Menon S, Valentini RP, Hidalgo G, Peschansky L, Mattoo TK (2008) Vitamin D insufficiency and hyperparathyroidism in children with chronic kidney disease. Pediatr Nephrol 23:1831–1836

    Article  PubMed  Google Scholar 

  6. Seeherunvong W, Abitbol CL, Chandar J, Zilleruelo G, Freundlich M (2009) Vitamin D insufficiency and deficiency in children with early chronic kidney disease. J Pediatr 154(906–911):e901

    Google Scholar 

  7. Bhan I, Powe CE, Berg AH, Ankers E, Wenger JB, Karumanchi SA, Thadhani RI (2012) Bioavailable vitamin D is more tightly linked to mineral metabolism than total vitamin D in incident hemodialysis patients. Kidney Int 82:84–89

    Article  PubMed  CAS  Google Scholar 

  8. Bikle DD, Gee E, Halloran B, Kowalski MA, Ryzen E, Haddad JG (1986) Assessment of the free fraction of 25-hydroxyvitamin D in serum and its regulation by albumin and the vitamin D-binding protein. J Clin Endocrinol Metab 63:954–959

    Article  PubMed  CAS  Google Scholar 

  9. Bikle DD, Siiteri PK, Ryzen E, Haddad JG (1985) Serum protein binding of 1,25-dihydroxyvitamin D: a reevaluation by direct measurement of free metabolite levels. J Clin Endocrinol Metab 61:969–975

    Article  PubMed  CAS  Google Scholar 

  10. Feldman D, Malloy PJ, Gross C (2001) Vitamin D: Biology, action, and clinical implications. In: Marcus R, Feldman D, Kelsey J (eds) Osteoporosis. Academic Press, San Diego, pp 257–303.

    Chapter  Google Scholar 

  11. White P, Cooke N (2000) The multifunctional properties and characteristics of vitamin D-binding protein. Trends Endocrinol Metab 11:320–327

    Article  PubMed  CAS  Google Scholar 

  12. Nykjaer A, Dragun D, Walther D, Vorum H, Jacobsen C, Herz J, Melsen F, Christensen EI, Willnow TE (1999) An endocytic pathway essential for renal uptake and activation of the steroid 25-(OH) vitamin D3. Cell 96:507–515

    Article  PubMed  CAS  Google Scholar 

  13. Nykjaer A, Fyfe JC, Kozyraki R, Leheste JR, Jacobsen C, Nielsen MS, Verroust PJ, Aminoff M, de la Chapelle A, Moestrup SK, Ray R, Gliemann J, Willnow TE, Christensen EI (2001) Cubilin dysfunction causes abnormal metabolism of the steroid hormone 25(OH) vitamin D(3). Proc Natl Acad Sci USA 98:13895–13900

    Article  PubMed  CAS  Google Scholar 

  14. Akeno N, Saikatsu S, Kawane T, Horiuchi N (1997) Mouse vitamin D-24-hydroxylase: molecular cloning, tissue distribution, and transcriptional regulation by 1alpha,25-dihydroxyvitamin D3. Endocrinology 138:2233–2240

    Article  PubMed  CAS  Google Scholar 

  15. Ohyama Y, Noshiro M, Okuda K (1991) Cloning and expression of cDNA encoding 25-hydroxyvitamin D3 24-hydroxylase. FEBS Lett 278:195–198

    Article  PubMed  CAS  Google Scholar 

  16. Petkovich M, Jones G (2011) CYP24A1 and kidney disease. Curr Opin Nephrol Hypertens 20:337–344

    Article  PubMed  CAS  Google Scholar 

  17. Shinki T, Jin CH, Nishimura A, Nagai Y, Ohyama Y, Noshiro M, Okuda K, Suda T (1992) Parathyroid hormone inhibits 25-hydroxyvitamin D3-24-hydroxylase mRNA expression stimulated by 1 alpha,25-dihydroxyvitamin D3 in rat kidney but not in intestine. J Biol Chem 267:13757–13762

    PubMed  CAS  Google Scholar 

  18. Zierold C, Mings JA, DeLuca HF (2001) Parathyroid hormone regulates 25-hydroxyvitamin D(3)-24-hydroxylase mRNA by altering its stability. Proc Natl Acad Sci USA 98:13572–13576

    Article  PubMed  CAS  Google Scholar 

  19. Zierold C, Reinholz GG, Mings JA, Prahl JM, DeLuca HF (2000) Regulation of the procine 1,25-dihydroxyvitamin D3-24-hydroxylase (CYP24) by 1,25-dihydroxyvitamin D3 and parathyroid hormone in AOK-B50 cells. Arch Biochem Biophys 381:323–327

    Article  PubMed  CAS  Google Scholar 

  20. Inoue Y, Segawa H, Kaneko I, Yamanaka S, Kusano K, Kawakami E, Furutani J, Ito M, Kuwahata M, Saito H, Fukushima N, Kato S, Kanayama HO, Miyamoto K (2005) Role of the vitamin D receptor in FGF23 action on phosphate metabolism. Biochem J 390:325–331

    Article  PubMed  CAS  Google Scholar 

  21. Perwad F, Zhang MY, Tenenhouse HS, Portale AA (2007) Fibroblast growth factor 23 impairs phosphorus and vitamin D metabolism in vivo and suppresses 25-hydroxyvitamin D-1alpha-hydroxylase expression in vitro. Am J Physiol Renal Physiol 293:F1577–1583

    Article  PubMed  CAS  Google Scholar 

  22. Shimada T, Yamazaki Y, Takahashi M, Hasegawa H, Urakawa I, Oshima T, Ono K, Kakitani M, Tomizuka K, Fujita T, Fukumoto S, Yamashita T (2005) Vitamin D receptor-independent FGF23 actions in regulating phosphate and vitamin D metabolism. Am J Physiol Renal Physiol 289:F1088–1095

    Article  PubMed  CAS  Google Scholar 

  23. Bosworth CR, Levin G, Robinson-Cohen C, Hoofnagle AN, Ruzinski J, Young B, Schwartz SM, Himmelfarb J, Kestenbaum B, de Boer IH (2012) The serum 24,25-dihydroxyvitamin D concentration, a marker of vitamin D catabolism, is reduced in chronic kidney disease. Kidney Int 82:693–700

    Article  PubMed  CAS  Google Scholar 

  24. Ogden CL, Kuczmarski RJ, Flegal KM, Mei Z, Guo S, Wei R, Grummer-Strawn LM, Curtin LR, Roche AF, Johnson CL (2002) Centers for Disease Control and Prevention 2000 growth charts for the United States: improvements to the 1977 National Center for Health Statistics version. Pediatrics 109:45–60

    Article  PubMed  Google Scholar 

  25. Hollis BW (1997) Quantitation of 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D by radioimmunoassay using radioiodinated tracers. Methods Enzymol 282:174–186

    Article  PubMed  CAS  Google Scholar 

  26. Clive DR, Sudhaker D, Giacherio D, Gupta M, Schreiber MJ, Sackrison JL, MacFarlane GD (2002) Analytical and clinical validation of a radioimmunoassay for the measurement of 1,25 dihydroxy vitamin D. Clin Biochem 35:517–521

    Article  PubMed  CAS  Google Scholar 

  27. Hoofnagle AN, Laha TJ, Donaldson TF (2010) A rubber transfer gasket to improve the throughput of liquid-liquid extraction in 96-well plates: application to vitamin D testing. J Chromatogr B Analyt Technol Biomed Life Sci 878:1639–1642

    Article  PubMed  CAS  Google Scholar 

  28. Gao P, Scheibel S, D’Amour P, John MR, Rao SD, Schmidt-Gayk H, Cantor TL (2001) Development of a novel immunoradiometric assay exclusively for biologically active whole parathyroid hormone 1–84: implications for improvement of accurate assessment of parathyroid function. J Bone Miner Res 16:605–614

    Article  PubMed  CAS  Google Scholar 

  29. Editorial (1979) Serum calcium. Lancet 1:858–859

  30. Schwartz GJ, Munoz A, Schneider MF, Mak RH, Kaskel F, Warady BA, Furth SL (2009) New equations to estimate GFR in children with CKD. J Am Soc Nephrol 20:629–637

    Article  PubMed  Google Scholar 

  31. National Kidney Foundation (2002) K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis 39:S1-266

    Article  Google Scholar 

  32. Powe CE, Ricciardi C, Berg AH, Erdenesanaa D, Collerone G, Ankers E, Wenger J, Karumanchi SA, Thadhani R, Bhan I (2011) Vitamin D-binding protein modifies the vitamin D-bone mineral density relationship. J Bone Miner Res 26:1609–1616

    Article  PubMed  CAS  Google Scholar 

  33. Vermeulen A, Verdonck L, Kaufman JM (1999) A critical evaluation of simple methods for the estimation of free testosterone in serum. J Clin Endocrinol Metab 84:3666–3672

    Article  PubMed  CAS  Google Scholar 

  34. Wetzsteon RJ, Shults J, Zemel BS, Gupta PU, Burnham JM, Herskovitz RM, Howard KM, Leonard MB (2009) Divergent effects of glucocorticoids on cortical and trabecular compartment BMD in childhood nephrotic syndrome. J Bone Miner Res 24:503–513

    Article  PubMed  CAS  Google Scholar 

  35. Committee to Review Dietary Reference Intakes for Vitamin D and Calcium, Institute of Medicine of the National Academies (2011) 2011 Dietary reference intakes for calcium and vitamin D. The National Academies Press, Washington, DC. Available at: http://www.ncbi.nlm.nih.gov/books/NBK56070/

  36. Wong CS, Pierce CB, Cole SR, Warady BA, Mak RH, Benador NM, Kaskel F, Furth SL, Schwartz GJ (2009) Association of proteinuria with race, cause of chronic kidney disease, and glomerular filtration rate in the chronic kidney disease in children study. Clin J Am Soc Nephrol 4:812–819

    Article  PubMed  CAS  Google Scholar 

  37. Doorenbos CR, de Cuba MM, Vogt L, Kema IP, van den Born J, Gans RO, Navis G, de Borst MH (2012) Antiproteinuric treatment reduces urinary loss of vitamin D-binding protein but does not affect vitamin D status in patients with chronic kidney disease. J Steroid Biochem Mol Biol 128:56–61

    Article  PubMed  CAS  Google Scholar 

  38. Prytula A, Wells D, McLean T, Balona F, Gullett A, Knott C, Cantwell M, Hassen K, Ledermann S, Rees L, Shroff R (2011) Urinary and dialysate losses of vitamin D-binding protein in children on chronic peritoneal dialysis. Pediatr Nephrol 27:643–649

    Article  PubMed  Google Scholar 

  39. Adams JS, Ren S, Liu PT, Chun RF, Lagishetty V, Gombart AF, Borregaard N, Modlin RL, Hewison M (2009) Vitamin d-directed rheostatic regulation of monocyte antibacterial responses. J Immunol 182:4289–4295

    Article  PubMed  CAS  Google Scholar 

  40. Chun RF, Lauridsen AL, Suon L, Zella LA, Pike JW, Modlin RL, Martineau AR, Wilkinson RJ, Adams J, Hewison M (2010) Vitamin D-binding protein directs monocyte responses to 25-hydroxy- and 1,25-dihydroxyvitamin D. J Clin Endocrinol Metab 95:3368–3376

    Article  PubMed  CAS  Google Scholar 

  41. Liu PT, Stenger S, Li H, Wenzel L, Tan BH, Krutzik SR, Ochoa MT, Schauber J, Wu K, Meinken C, Kamen DL, Wagner M, Bals R, Steinmeyer A, Zugel U, Gallo RL, Eisenberg D, Hewison M, Hollis BW, Adams JS, Bloom BR, Modlin RL (2006) Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science 311:1770–1773

    Article  PubMed  CAS  Google Scholar 

  42. Leheste JR, Melsen F, Wellner M, Jansen P, Schlichting U, Renner-Muller I, Andreassen TT, Wolf E, Bachmann S, Nykjaer A, Willnow TE (2003) Hypocalcemia and osteopathy in mice with kidney-specific megalin gene defect. FASEB J 17:247–249

    PubMed  CAS  Google Scholar 

  43. Safadi FF, Thornton P, Magiera H, Hollis BW, Gentile M, Haddad JG, Liebhaber SA, Cooke NE (1999) Osteopathy and resistance to vitamin D toxicity in mice null for vitamin D binding protein. J Clin Invest 103:239–251

    Article  PubMed  CAS  Google Scholar 

  44. Hasegawa H, Nagano N, Urakawa I, Yamazaki Y, Iijima K, Fujita T, Yamashita T, Fukumoto S, Shimada T (2010) Direct evidence for a causative role of FGF23 in the abnormal renal phosphate handling and vitamin D metabolism in rats with early-stage chronic kidney disease. Kidney Int 78:975–980

    Article  PubMed  CAS  Google Scholar 

  45. Saito H, Kusano K, Kinosaki M, Ito H, Hirata M, Segawa H, Miyamoto K, Fukushima N (2003) Human fibroblast growth factor-23 mutants suppress Na+-dependent phosphate co-transport activity and 1alpha,25-dihydroxyvitamin D3 production. J Biol Chem 278:2206–2211

    Article  PubMed  CAS  Google Scholar 

  46. Liu N, Nguyen L, Chun RF, Lagishetty V, Ren S, Wu S, Hollis B, DeLuca HF, Adams JS, Hewison M (2008) Altered endocrine and autocrine metabolism of vitamin D in a mouse model of gastrointestinal inflammation. Endocrinology 149:4799–4808

    Article  PubMed  CAS  Google Scholar 

  47. Chun RF, Peercy BE, Adams JS, Hewison M (2012) Vitamin D binding protein and monocyte response to 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D: analysis by mathematical modeling. PLoS One 7:e30773

    Article  PubMed  CAS  Google Scholar 

  48. Ishimura E, Nishizawa Y, Inaba M, Matsumoto N, Emoto M, Kawagishi T, Shoji S, Okuno S, Kim M, Miki T, Morii H (1999) Serum levels of 1,25-dihydroxyvitamin D, 24,25-dihydroxyvitamin D, and 25-hydroxyvitamin D in nondialyzed patients with chronic renal failure. Kidney Int 55:1019–1027

    Article  PubMed  CAS  Google Scholar 

  49. Koenig KG, Lindberg JS, Zerwekh JE, Padalino PK, Cushner HM, Copley JB (1992) Free and total 1,25-dihydroxyvitamin D levels in subjects with renal disease. Kidney Int 41:161–165

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the study participants and their families for their time and dedication. We greatly appreciate the assistance of the Clinical Research Coordinators and the staff at the Clinical Translational Research Centers (CTRC) at CCHMC and CHOP in the conduct of this study, particularly Samir Sayed, B.Sc. in the CTRC Translational Core Laboratory at CHOP for his work on the DBP assay.

Funding Sources

This project was supported by NIH grants R01-DK060030 (MBL), R01-HD040714 (MBL), K24-DK076808 (MBL), and by the National Center for Research Resources, Grants UL1RR024134 and M01-RR-08084, which are now at the National Center for Advancing Translational Sciences, Grants UL1TR000003 and UL1TR000077. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. Dr. Laskin was supported by a Career Development Award in Comparative Effectiveness Research (KM1CA156715-01). Dr. Denburg was funded by a National Kidney Foundation/Amgen KDOQI Research Fellowship, The Nephcure Foundation–American Society of Nephrology Research Grant, and Grant K23-DK093556.

Disclosure statement

Dr. de Boer receives research funding from Abbott Laboratories. The remaining authors have nothing to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle R. Denburg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Denburg, M.R., Kalkwarf, H.J., de Boer, I.H. et al. Vitamin D bioavailability and catabolism in pediatric chronic kidney disease. Pediatr Nephrol 28, 1843–1853 (2013). https://doi.org/10.1007/s00467-013-2493-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-013-2493-9

Keywords

Navigation