Skip to main content

Advertisement

Log in

Coreceptors and HIV-1 Pathogenesis

  • Published:
Current HIV/AIDS Reports Aims and scope Submit manuscript

Abstract

The major HIV-1 coreceptors, CCR5 and CXCR4, mediate virus entry into CD4+ cells and are therefore a critical component of the HIV-1 life cycle. Alterations in coreceptor preference as well as the efficiency and mechanism of interaction between HIV-1 and CCR5 and/or CXCR4 has a significant influence on viral tropism, progression of disease, and response to coreceptor antagonists. In addition, these alterations influence the susceptibility of CD4+ T-cell, monocyte, and dendritic cell subsets to infection and therefore, are important for several facets of HIV-1 pathogenesis including the establishment of latent reservoirs, trafficking, and transmission. This review highlights recent literature that has advanced our understanding of the role of coreceptors in HIV-1 pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Jakobsen, M.R., Ellett, A., Churchill, M.J., Gorry, P.R.: Viral tropism, fitness and pathogenicity of HIV-1 subtype C. Future Virology 5, 219–231 (2010).

    Article  Google Scholar 

  2. Sterjovski, J., Roche, M., Churchill, M.J., Ellett, A., Farrugia, W., Gray, L.R., Cowley, D., Poumbourios, P., Lee, B., Wesselingh, S., Cunningham, A.L., Ramsland, P.A., Gorry, P.R.: An altered and more efficient mechanism of CCR5 engagement contributes to macrophage tropism of CCR5-using HIV-1 envelopes. Virology 404, 269–278 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Samson, M., Libert, F., Doranz, B.J., Rucker, J., Liesnard, C., Farber, C.M., Saragosti, S., Lapoumeroulie, C., Cognaux, J., Forceille, C., Muyldermans, G., Verhofstede, C., Burtonboy, G., Georges, M., Imai, T., Rana, S., Yi, Y., Smyth, R.J., Collman, R.G., Doms, R.W., Vassart, G., Parmentier, M.: Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 382, 722–725 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Casazza, J.P., Brenchley, J.M., Hill, B.J., Ayana, R., Ambrozak, D., Roederer, M., Douek, D.C., Betts, M.R., Koup, R.A.: Autocrine production of beta-chemokines protects CMV-Specific CD4 T cells from HIV infection. PLoS Pathog 5, e1000646 (2009).

    Article  PubMed  Google Scholar 

  5. Hutter, G., Nowak, D., Mossner, M., Ganepola, S., Mussig, A., Allers, K., Schneider, T., Hofmann, J., Kucherer, C., Blau, O., Blau, I.W., Hofmann, W.K., Thiel, E.: Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N Engl J Med 360, 692–698 (2009).

    Article  PubMed  Google Scholar 

  6. Pandrea, I., Apetrei, C., Gordon, S., Barbercheck, J., Dufour, J., Bohm, R., Sumpter, B., Roques, P., Marx, P.A., Hirsch, V.M., Kaur, A., Lackner, A.A., Veazey, R.S., Silvestri, G.: Paucity of CD4 + CCR5+ T cells is a typical feature of natural SIV hosts. Blood 109, 1069–1076 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Coetzer, M., Nedellec, R., Salkowitz, J., McLaughlin, S., Liu, Y., Heath, L., Mullins, J.I., Mosier, D.E.: Evolution of CCR5 use before and during coreceptor switching. J Virol 82, 11758–11766 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. • Coetzer, M., Nedellec, R., Cilliers, T., Meyers, T., Morris, L., Mosier, D.E.: Extreme genetic divergence is required for coreceptor switching in HIV-1 subtype C. Journal of Acquired Immune Deficiency Syndromes 56, 9–15 (2011). This study demonstrated that the genetic determinants in gp120 for coreceptor switching in HIV-1 subtype C infection are more complex than in HIV-1 subtype B

  9. Wade, J., Sterjovski, J., Gray, L., Roche, M., Chiavaroli, L., Ellett, A., Jakobsen, M.R., Cowley, D., da Fonseca Pereira, C., Saksena, N., Wang, B., Purcell, D.F., Karlsson, I., Fenyo, E.M., Churchill, M., Gorry, P.R.: Enhanced CD4+ cellular apoptosis by CCR5-restricted HIV-1 envelope glycoprotein variants from patients with progressive HIV-1 infection. Virology 396, 246–255 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Sterjovski, J., Churchill, M.J., Ellett, A., Gray, L.R., Roche, M.J., Dunfee, R.L., Purcell, D.F., Saksena, N., Wang, B., Sonza, S., Wesselingh, S.L., Karlsson, I., Fenyo, E.M., Gabuzda, D., Cunningham, A.L., Gorry, P.R.: Asn 362 in gp120 contributes to enhanced fusogenicity by CCR5-restricted HIV-1 envelope glycoprotein variants from patients with AIDS. Retrovirology 4, 89 (2007).

    Article  PubMed  Google Scholar 

  11. Gorry, P.R., Dunfee, R.L., Mefford, M.E., Kunstman, K., Morgan, T., Moore, J.P., Mascola, J.R., Agopian, K., Holm, G.H., Mehle, A., Taylor, J., Farzan, M., Wang, H., Ellery, P., Willey, S.J., Clapham, P.R., Wolinsky, S.M., Crowe, S.M., Gabuzda, D.: Changes in the V3 region of gp120 contribute to unusually broad coreceptor usage of an HIV-1 isolate from a CCR5 Delta32 heterozygote. Virology 362, 163–178 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. • Riddick, N.E., Hermann, E.A., Loftin, L.M., Elliott, S.T., Wey, W.C., Cervasi, B., Taafe, J., Engram, J.C., Li, B., Else, J.G., Li, Y., Hahn, B.H., Derdeyn, C.A., Sodora, D.L., Apetrei, C., Paiardini, M., Silvestri, G., Collman, R.G.: A novel CCR5 mutation common in sooty mangabeys reveals SIVsmm infection of CCR5-null natural hosts and efficient alternative coreceptor usage in vivo. PLoS Pathogens 6, e1001064. (2010). This study identified novel mutant CCR5 alleles that influence the pathogenesis and coreceptor usage of SIV.

    Article  PubMed  Google Scholar 

  13. Gray, L., Sterjovski, J., Churchill, M., Ellery, P., Nasr, N., Lewin, S.R., Crowe, S.M., Wesselingh, S., Cunningham, A.L., Gorry, P.R.: Uncoupling coreceptor usage of human immunodeficiency virus type 1 (HIV-1) from macrophage tropism reveals biological properties of CCR5-restricted HIV-1 isolates from patients with acquired immunodeficiency syndrome. Virology 337, 384–398 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Gonzalez-Scarano, F., Martin-Garcia, J.: The neuropathogenesis of AIDS. Nat Rev Immunol 5, 69–81 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Groot, F., van Capel, T.M., Schuitemaker, J., Berkhout, B., de Jong, E.C.: Differential susceptibility of naive, central memory and effector memory T cells to dendritic cell-mediated HIV-1 transmission. Retrovirology 3, 52 (2006).

    Article  PubMed  Google Scholar 

  16. • Pfaff, J.M., Wilen, C.B., Harrison, J.E., Demarest, J.F., Lee, B., Doms, R.W., Tilton, J.C.: HIV-1 resistance to CCR5 antagonists associated with highly efficient use of CCR5 and altered tropism on primary CD4+ T cells. J Virol 84, 6505–6514 (2010). This study showed that alteration in the way HIV-1 with resistance to CCR5 antagonists uses CCR5 for entry may reduce its ability to replicate in various CD4+ cell types.

    Article  CAS  PubMed  Google Scholar 

  17. Stoddart, C.A., Keir, M.E., McCune, J.M.: IFN-alpha-induced upregulation of CCR5 leads to expanded HIV tropism in vivo. PLoS Pathog 6, e1000766 (2010).

    Article  PubMed  Google Scholar 

  18. Duenas-Decamp, M.J., Peters, P.J., Burton, D., Clapham, P.R.: Determinants flanking the CD4 binding loop modulate macrophage tropism of human immunodeficiency virus type 1 R5 envelopes. J Virol 83, 2575–2583 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. • Gray, L., Roche, M., Churchill, M.J., Sterjovski, J., Ellett, A., Poumbourios, P., Sheffief, S., Wang, B., Saksena, N., Purcell, D.F., Wesselingh, S., Cunningham, A.L., Brew, B.J., Gabuzda, D., Gorry, P.R.: Tissue-specific sequence alterations in the human immunodeficiency virus type 1 envelope favoring CCR5 usage contribute to persistence of dual-tropic virus in the brain. J Virol 83, 5430–5441 (2009). This study demonstrated a mechanism for the persistence of R5X4 HIV-1 within the brain, involving preferential CCR5 usage.

    Article  CAS  PubMed  Google Scholar 

  20. Toma, J., Whitcomb, J.M., Petropoulos, C.J., Huang, W.: Dual-tropic HIV type 1 isolates vary dramatically in their utilization of CCR5 and CXCR4 coreceptors. AIDS 24, 2181–2186 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Loftin, L.M., Kienzle, M.F., Yi, Y., Lee, B., Lee, F.H., Gray, L., Gorry, P.R., Collman, R.G.: Constrained use of CCR5 on CD4+ lymphocytes by R5X4 HIV-1: efficiency of Env-CCR5 interactions and low CCR5 expression determine a range of restricted CCR5-mediated entry. Virology 402, 135–148 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Westby, M., Smith-Burchnell, C., Mori, J., Lewis, M., Mosley, M., Stockdale, M., Dorr, P., Ciaramella, G., Perros, M.: Reduced maximal inhibition in phenotypic susceptibility assays indicates that viral strains resistant to the CCR5 antagonist maraviroc utilize inhibitor-bound receptor for entry. J Virol 81, 2359–2371 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Pugach, P., Marozsan, A.J., Ketas, T.J., Landes, E.L., Moore, J.P., Kuhmann, S.E.: HIV-1 clones resistant to a small molecule CCR5 inhibitor use the inhibitor-bound form of CCR5 for entry. Virology 361, 212–228 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Tilton, J.C., Amrine-Madsen, H., Miamidian, J.L., Kitrinos, K.M., Pfaff, J., Demarest, J.F., Ray, N., Jeffrey, J.L., Labranche, C.C., Doms, R.W.: HIV type 1 from a patient with baseline resistance to CCR5 antagonists uses drug-bound receptor for entry. AIDS Res Hum Retroviruses 26, 13–24 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. • Tilton, J.C., Wilen, C.B., Didigu, C.A., Sinha, R., Harrison, J.E., Agrawal-Gamse, C., Henning, E.A., Bushman, F.D., Martin, J.N., Deeks, S.G., Doms, R.W.: A maraviroc-resistant HIV-1 with narrow cross-resistance to other CCR5 antagonists depends on both N-terminal and extracellular loop domains of drug-bound CCR5. J Virol 84, 10863–10876 (2010). This study showed that maraviroc-resistant HIV-1 has an altered mechanism of CCR5 usage with increased reliance on the CCR5 N-terminus, but that viruses remaining sensitive to other CCR5 antagonists still require interaction with the ECL regions.

  26. Berro, R., Sanders, R.W., Lu, M., Klasse, P.J., Moore, J.P.: Two HIV-1 variants resistant to small molecule CCR5 inhibitors differ in how they use CCR5 for entry. PLoS Pathog 5, e1000548 (2009).

    Article  PubMed  Google Scholar 

  27. • Anastassopoulou, C.G., Ketas, T.J., Klasse, P.J., Moore, J.P.: Resistance to CCR5 inhibitors caused by sequence changes in the fusion peptide of HIV-1 gp41. Proc Natl Acad Sci USA 106, 5318–5323 (2009). This study showed that there are alternative genetic pathways for HIV-1 resistance to CCR5 antagonists, which may involve alterations in the V3 region of gp120, or gp41.

    Article  CAS  PubMed  Google Scholar 

  28. Pugach, P., Ray, N., Klasse, P.J., Ketas, T.J., Michael, E., Doms, R.W., Lee, B., Moore, J.P.: Inefficient entry of vicriviroc-resistant HIV-1 via the inhibitor-CCR5 complex at low cell surface CCR5 densities. Virology 387, 296–302 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Anastassopoulou, C.G., Marozsan, A.J., Matet, A., Snyder, A.D., Arts, E.J., Kuhmann, S.E., Moore, J.P.: Escape of HIV-1 from a small molecule CCR5 inhibitor is not associated with a fitness loss. PLoS Pathog 3, e79 (2007).

    Article  PubMed  Google Scholar 

  30. Douek, D.C., Roederer, M., Koup, R.A.: Emerging concepts in the immunopathogenesis of AIDS. Annu Rev Med 60, 471–484 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Ancuta, P., Monteiro, P., Sekaly, R.P.: Th17 lineage commitment and HIV-1 pathogenesis. Curr Opin HIV AIDS 5, 158–165 (2010).

    Article  PubMed  Google Scholar 

  32. • Gosselin, A., Monteiro, P., Chomont, N., Diaz-Griffero, F., Said, E.A., Fonseca, S., Wacleche, V., El-Far, M., Boulassel, M.R., Routy, J.P., Sekaly, R.P., Ancuta, P.: Peripheral blood CCR4 + CCR6+ and CXCR3 + CCR6 + CD4+ T cells are highly permissive to HIV-1 infection. J Immunol 184, 1604–1616 (2010). This study identified CCR6 as a marker for memory CD4+ T cells that harbor the highest levels of proviral DNA in HIV-infected individuals.

    Article  CAS  PubMed  Google Scholar 

  33. Haase, A.T.: Targeting early infection to prevent HIV-1 mucosal transmission. Nature 464, 217–223 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. •• Cicala, C., Martinelli, E., McNally, J.P., Goode, D.J., Gopaul, R., Hiatt, J., Jelicic, K., Kottilil, S., Macleod, K., O’Shea, A., Patel, N., Van Ryk, D., Wei, D., Pascuccio, M., Yi, L., McKinnon, L., Izulla, P., Kimani, J., Kaul, R., Fauci, A.S., Arthos, J.: The integrin alpha4beta7 forms a complex with cell-surface CD4 and defines a T-cell subset that is highly susceptible to infection by HIV-1. Proc Natl Acad Sci USA 106, 20877–20882 (2009). This study demonstrated specific affinity of HIV-gp120 for the integrin alpha4beta7 expressed on CCR5+ T cells that is critical for efficient virus propagation and dissemination following sexual transmission.

    Article  CAS  PubMed  Google Scholar 

  35. Zaunders, J.J., Dyer, W.B., Wang, B., Munier, M.L., Miranda-Saksena, M., Newton, R., Moore, J., Mackay, C.R., Cooper, D.A., Saksena, N.K., Kelleher, A.D.: Identification of circulating antigen-specific CD4+ T lymphocytes with a CCR5+, cytotoxic phenotype in an HIV-1 long-term nonprogressor and in CMV infection. Blood 103, 2238–2247 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. • Chomont, N., El-Far, M., Ancuta, P., Trautmann, L., Procopio, F.A., Yassine-Diab, B., Boucher, G., Boulassel, M.R., Ghattas, G., Brenchley, J.M., Schacker, T.W., Hill, B.J., Douek, D.C., Routy, J.P., Haddad, E.K., Sekaly, R.P.: HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation. Nat Med 15, 893–900 (2009). This study identified T CM and T TM cells as major HIV-1 reservoirs in patients undergoing viral-suppressive HAART with high and low CD4 counts, respectively.

    Article  CAS  PubMed  Google Scholar 

  37. Ahmed, R., Bevan, M.J., Reiner, S.L., Fearon, D.T.: The precursors of memory: models and controversies. Nat Rev Immunol 9, 662–668 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Trono, D., Van Lint, C., Rouzioux, C., Verdin, E., Barre-Sinoussi, F., Chun, T.W., Chomont, N.: HIV persistence and the prospect of long-term drug-free remissions for HIV-infected individuals. Science 329, 174–180 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. •• Benlahrech, A., Harris, J., Meiser, A., Papagatsias, T., Hornig, J., Hayes, P., Lieber, A., Athanasopoulos, T., Bachy, V., Csomor, E., Daniels, R., Fisher, K., Gotch, F., Seymour, L., Logan, K., Barbagallo, R., Klavinskis, L., Dickson, G., Patterson, S.: Adenovirus vector vaccination induces expansion of memory CD4 T cells with a mucosal homing phenotype that are readily susceptible to HIV-1. Proc Natl Acad Sci USA 106, 19940–19945 (2009). This study provides evidence that adenoviral-based vaccination against HIV-1 in individuals with pre-existing immunity against Ad5 results in preferential expansion of CD4+ T cells expressing CCR5 and higher susceptibility to HIV infection

    CAS  PubMed  Google Scholar 

  40. Bergamaschi, A., Pancino, G.: Host hindrance to HIV-1 replication in monocytes and macrophages. Retrovirology 7, 31 (2010).

    Article  PubMed  Google Scholar 

  41. Ziegler-Heitbrock, L., Ancuta, P., Crowe, S., Dalod, M., Grau, V., Hart, D.N., Leenen, P.J., Liu, Y.J., Macpherson, G., Randolph, G.J., Scherberich, J., Schmitz, J., Shortman, K., Sozzani, S., Strobl, H., Zembala, M., Austyn, J.M., Lutz, M.B.: Nomenclature of monocytes and dendritic cells in blood. Blood 116, e74–80 (2010).

    Google Scholar 

  42. • Ancuta, P., Kamat, A., Kunstman, K.J., Kim, E.Y., Autissier, P., Wurcel, A., Zaman, T., Stone, D., Mefford, M., Morgello, S., Singer, E.J., Wolinsky, S.M., Gabuzda, D.: Microbial translocation is associated with increased monocyte activation and dementia in AIDS patients. PLoS ONE 3, e2516 (2008). This study reports upregulation of CCR5 expression on three different monocyte subsets in the peripheral blood of AIDS subjects compared to HIV-1–uninfected controls, with a preferential increase in the frequency of the “intermediate” CD14 + CD16 + CCR5 high monocyte subset.

    Article  PubMed  Google Scholar 

  43. Crowe, S.M., Ziegler-Heitbrock, L.: Editorial: Monocyte subpopulations and lentiviral infection. J Leukoc Biol 87, 541–543 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Ancuta, P., Autissier, P., Wurcel, A., Zaman, T., Stone, D., Gabuzda, D.: CD16+ monocyte-derived macrophages activate resting T cells for HIV infection by producing CCR3 and CCR4 ligands. J Immunol 176, 5760–5771 (2006).

    CAS  PubMed  Google Scholar 

  45. Shen, R., Richter, H.E., Clements, R.H., Novak, L., Huff, K., Bimczok, D., Sankaran-Walters, S., Dandekar, S., Clapham, P.R., Smythies, L.E., Smith, P.D.: Macrophages in vaginal but not intestinal mucosa are monocyte-like and permissive to human immunodeficiency virus type 1 infection. J Virol 83, 3258–3267 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Gorry, P.R., Bristol, G., Zack, J.A., Ritola, K., Swanstrom, R., Birch, C.J., Bell, J.E., Bannert, N., Crawford, K., Wang, H., Schols, D., De Clercq, E., Kunstman, K., Wolinsky, S.M., Gabuzda, D.: Macrophage Tropism of Human Immunodeficiency Virus Type 1 Isolates from Brain and Lymphoid Tissues Predicts Neurotropism Independent of Coreceptor Specificity. J Virol 75, 10073–10089 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Gras, G., Kaul, M.: Molecular mechanisms of neuroinvasion by monocytes-macrophages in HIV-1 infection. Retrovirology 7, 30 (2010).

    Article  PubMed  Google Scholar 

  48. • Blanchet, F.P., Moris, A., Nikolic, D.S., Lehmann, M., Cardinaud, S., Stalder, R., Garcia, E., Dinkins, C., Leuba, F., Wu, L., Schwartz, O., Deretic, V., Piguet, V.: Human immunodeficiency virus-1 inhibition of immunoamphisomes in dendritic cells impairs early innate and adaptive immune responses. Immunity 32, 654–669 (2010). This study demonstrated that HIV-1 downregulates autophagy, thus facilitating cell-to-cell transmission of virions while preventing the initiation of HIV-1–specific immune responses.

    Article  CAS  PubMed  Google Scholar 

  49. Pion, M., Arrighi, J.F., Jiang, J., Lundquist, C.A., Hartley, O., Aiken, C., Piguet, V.: Analysis of HIV-1-X4 fusion with immature dendritic cells identifies a specific restriction that is independent of CXCR4 levels. J Invest Dermatol 127, 319–323 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Hubner, W., McNerney, G.P., Chen, P., Dale, B.M., Gordon, R.E., Chuang, F.Y., Li, X.D., Asmuth, D.M., Huser, T., Chen, B.K.: Quantitative 3D video microscopy of HIV transfer across T cell virological synapses. Science 323, 1743–1747 (2009).

    Article  PubMed  Google Scholar 

Download references

Disclosure

P. R. Gorry: scientific advisory board for ViiV Healthcare Australia; P. Ancuta: none.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul R. Gorry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorry, P.R., Ancuta, P. Coreceptors and HIV-1 Pathogenesis. Curr HIV/AIDS Rep 8, 45–53 (2011). https://doi.org/10.1007/s11904-010-0069-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11904-010-0069-x

Keywords

Navigation