Skip to main content

Advertisement

Log in

Immune Reconstitution in Chronic Lymphocytic Leukemia

  • Chronic Lymphocytic Leukemia (S O'Brien, Section Editor)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

Chronic lymphocytic leukemia (CLL) is associated with a profound immune defect, which results in increased susceptibility to recurrent infections as well as a failure to mount effective antitumor immune responses. Current chemotherapy-based regimens are not curative and often worsen this immune suppression, so their usefulness is limited, particularly in the frail and elderly. This article reviews the immune defect in CLL and discusses strategies aimed at repairing or circumventing this defect. In particular, it focuses on recent developments in the areas of CD40 ligand (CD40L/CD154) gene therapy, immunomodulatory agents such as lenalidomide, and adoptive transfer of T cells bearing chimeric antigen receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. • Eichhorst BF, Busch R, Stilgenbauer S, et al.: First-line therapy with fludarabine compared with chlorambucil does not result in a major benefit for elderly patients with advanced chronic lymphocytic leukemia. Blood 2009, 114:3382–91. This important clinical trial highlights the challenges of successfully treating elderly patients with CLL, emphasizing the need for novel noncytotoxic therapies for this disease.

    Article  PubMed  CAS  Google Scholar 

  2. •• Hallek M, Fischer K, Fingerle-Rowson G, et al.: Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: a randomised, open-label, phase 3 trial. Lancet 2010, 376:1164–74. This phase 3 trial demonstrates the survival advantage of the addition of rituximab to fludarabine and cyclophosphamide, and underpins the current standard of care in CLL.

    Article  PubMed  CAS  Google Scholar 

  3. Dunn GP, Bruce AT, Ikeda H, et al. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002;3:991–8.

    Article  PubMed  CAS  Google Scholar 

  4. Catovsky D, Miliani E, Okos A, et al. Clinical significance of T-cells in chronic lymphocytic leukaemia. Lancet. 1974;2:751–2.

    Article  PubMed  CAS  Google Scholar 

  5. Platsoucas CD, Galinski M, Kempin S, et al. Abnormal T lymphocyte subpopulations in patients with B cell chronic lymphocytic leukemia: an analysis by monoclonal antibodies. J Immunol. 1982;129:2305–12.

    PubMed  CAS  Google Scholar 

  6. Herrmann F, Lochner A, Philippen H, et al. Imbalance of T cell subpopulations in patients with chronic lymphocytic leukaemia of the B cell type. Clin Exp Immunol. 1982;49:157–62.

    PubMed  CAS  Google Scholar 

  7. Van den Hove LE, Vandenberghe P, Van Gool SW, et al. Peripheral blood lymphocyte subset shifts in patients with untreated hematological tumors: evidence for systemic activation of the T cell compartment. Leuk Res. 1998;22:175–84.

    Article  PubMed  Google Scholar 

  8. Velardi A, Prchal JT, Prasthofer EF, et al. Expression of NK-lineage markers on peripheral blood lymphocytes with T-helper (Leu3+/T4+) phenotype in B cell chronic lymphocytic leukemia. Blood. 1985;65:149–55.

    PubMed  CAS  Google Scholar 

  9. Rossi E, Matutes E, Morilla R, et al. Zeta chain and CD28 are poorly expressed on T lymphocytes from chronic lymphocytic leukemia. Leukemia. 1996;10:494–7.

    PubMed  CAS  Google Scholar 

  10. Goolsby CL, Kuchnio M, Finn WG, et al. Expansions of clonal and oligoclonal T cells in B-cell chronic lymphocytic leukemia are primarily restricted to the CD3(+)CD8(+) T-cell population. Cytometry. 2000;42:188–95.

    Article  PubMed  CAS  Google Scholar 

  11. Rezvany MR, Jeddi-Tehrani M, Osterborg A, et al. Oligoclonal TCRBV gene usage in B-cell chronic lymphocytic leukemia: major perturbations are preferentially seen within the CD4 T-cell subset. Blood. 1999;94:1063–9.

    PubMed  CAS  Google Scholar 

  12. Serrano D, Monteiro J, Allen SL, et al. Clonal expansion within the CD4+CD57+ and CD8+CD57+ T cell subsets in chronic lymphocytic leukemia. J Immunol. 1997;158:1482–9.

    PubMed  CAS  Google Scholar 

  13. Farace F, Orlanducci F, Dietrich PY, et al. T cell repertoire in patients with B chronic lymphocytic leukemia. Evidence for multiple in vivo T cell clonal expansions. J Immunol. 1994;153:4281–90.

    PubMed  CAS  Google Scholar 

  14. Mackus WJ, Frakking FN, Grummels A, et al. Expansion of CMV-specific CD8+CD45RA+CD27- T cells in B-cell chronic lymphocytic leukemia. Blood. 2003;102:1057–63.

    Article  PubMed  CAS  Google Scholar 

  15. Pourgheysari B, Bruton R, Parry H, et al. The number of cytomegalovirus-specific CD4+ T cells is markedly expanded in patients with B-cell chronic lymphocytic leukemia and determines the total CD4+ T-cell repertoire. Blood. 2010;116:2968–74.

    Article  PubMed  CAS  Google Scholar 

  16. Akbar AN. The silent war against CMV in CLL. Blood. 2011;116:2869–70.

    Article  Google Scholar 

  17. Mu X, Kay NE, Gosland MP, et al. Analysis of blood T-cell cytokine expression in B-chronic lymphocytic leukaemia: evidence for increased levels of cytoplasmic IL-4 in resting and activated CD8 T cells. Br J Haematol. 1997;96:733–5.

    Article  PubMed  CAS  Google Scholar 

  18. Dancescu M, Rubio-Trujillo M, Biron G, et al. Interleukin 4 protects chronic lymphocytic leukemic B cells from death by apoptosis and upregulates Bcl-2 expression. J Exp Med. 1992;176:1319–26.

    Article  PubMed  CAS  Google Scholar 

  19. Panayiotidis P, Ganeshaguru K, Jabbar SA, et al. Interleukin-4 inhibits apoptotic cell death and loss of the bcl-2 protein in B-chronic lymphocytic leukaemia cells in vitro. Br J Haematol. 1993;85:439–45.

    Article  PubMed  CAS  Google Scholar 

  20. Kay NE, Han L, Bone N, et al. Interleukin 4 content in chronic lymphocytic leukaemia (CLL) B cells and blood CD8+ T cells from B-CLL patients: impact on clonal B-cell apoptosis. Br J Haematol. 2001;112:760–7.

    Article  PubMed  CAS  Google Scholar 

  21. de Totero D, Reato G, Mauro F, et al. IL4 production and increased CD30 expression by a unique CD8+ T-cell subset in B-cell chronic lymphocytic leukaemia. Br J Haematol. 1999;104:589–99.

    Article  PubMed  Google Scholar 

  22. Cerutti A, Kim EC, Shah S, et al. Dysregulation of CD30+ T cells by leukemia impairs isotype switching in normal B cells. Nat Immunol. 2001;2:150–6.

    Article  PubMed  CAS  Google Scholar 

  23. Foa R, Catovsky D, Brozovic M, et al. Clinical staging and immunological findings in chronic lymphocytic leukemia. Cancer. 1979;44:483–7.

    Article  PubMed  CAS  Google Scholar 

  24. Lauria F, Foa R, Mantovani V, et al. T-cell functional abnormality in B-chronic lymphocytic leukaemia: evidence of a defect of the T-helper subset. Br J Haematol. 1983;54:277–83.

    Article  PubMed  CAS  Google Scholar 

  25. Beyer M, Kochanek M, Darabi K, et al. Reduced frequencies and suppressive function of CD4+CD25hi regulatory T cells in patients with chronic lymphocytic leukemia after therapy with fludarabine. Blood. 2005;106:2018–25.

    Article  PubMed  CAS  Google Scholar 

  26. Giannopoulos K, Schmitt M, Kowal M, et al. Characterization of regulatory T cells in patients with B-cell chronic lymphocytic leukemia. Oncol Rep. 2008;20:677–82.

    PubMed  Google Scholar 

  27. D’Arena G, Laurenti L, Minervini MM, et al. Regulatory T-cell number is increased in chronic lymphocytic leukemia patients and correlates with progressive disease. Leuk Res. 2011;35:363–8.

    Article  PubMed  Google Scholar 

  28. Lindqvist CA, Christiansson LH, Simonsson B, et al. T regulatory cells control T-cell proliferation partly by the release of soluble CD25 in patients with B-cell malignancies. Immunology. 2010;133:371–6.

    Article  Google Scholar 

  29. Jak M, Mous R, Remmerswaal EB, et al. Enhanced formation and survival of CD4+ CD25hi Foxp3+ T-cells in chronic lymphocytic leukemia. Leuk Lymphoma. 2009;50:788–801.

    Article  PubMed  CAS  Google Scholar 

  30. Pallasch CP, Ulbrich S, Brinker R, et al. Disruption of T cell suppression in chronic lymphocytic leukemia by CD200 blockade. Leuk Res. 2009;33:460–4.

    Article  PubMed  CAS  Google Scholar 

  31. Gorgun G, Holderried TA, Zahrieh D, et al. Chronic lymphocytic leukemia cells induce changes in gene expression of CD4 and CD8 T cells. J Clin Invest. 2005;115:1797–805.

    Article  PubMed  Google Scholar 

  32. Ramsay AG, Johnson AJ, Lee AM, et al. Chronic lymphocytic leukemia T cells show impaired immunological synapse formation that can be reversed with an immunomodulating drug. J Clin Invest. 2008;118:2427–37.

    PubMed  CAS  Google Scholar 

  33. Gorgun G, Ramsay AG, Holderried TA, et al. E(mu)-TCL1 mice represent a model for immunotherapeutic reversal of chronic lymphocytic leukemia-induced T-cell dysfunction. Proc Natl Acad Sci U S A. 2009;106:6250–5.

    Article  PubMed  CAS  Google Scholar 

  34. Hofbauer JP, Heyder C, Denk U, et al. Development of CLL in the TCL1 transgenic mouse model is associated with severe skewing of the T-cell compartment homologous to human CLL. Leukemia. 2011;25:1452–8.

    Article  PubMed  Google Scholar 

  35. Cantwell M, Hua T, Pappas J, et al. Acquired CD40-ligand deficiency in chronic lymphocytic leukemia. Nat Med. 1997;3:984–9.

    Article  PubMed  CAS  Google Scholar 

  36. Noelle RJ, Roy M, Shepherd DM, et al. A 39-kDa protein on activated helper T cells binds CD40 and transduces the signal for cognate activation of B cells. Proc Natl Acad Sci U S A. 1992;89:6550–4.

    Article  PubMed  CAS  Google Scholar 

  37. Ranheim EA, Kipps TJ. Activated T cells induce expression of B7/BB1 on normal or leukemic B cells through a CD40-dependent signal. J Exp Med. 1993;177:925–35.

    Article  PubMed  CAS  Google Scholar 

  38. Dazzi F, D’Andrea E, Biasi G, et al. Failure of B cells of chronic lymphocytic leukemia in presenting soluble and alloantigens. Clin Immunol Immunopathol. 1995;75:26–32.

    Article  PubMed  CAS  Google Scholar 

  39. Van den Hove LE, Van Gool SW, Vandenberghe P, et al. CD40 triggering of chronic lymphocytic leukemia B cells results in efficient alloantigen presentation and cytotoxic T lymphocyte induction by up-regulation of CD80 and CD86 costimulatory molecules. Leukemia. 1997;11:572–80.

    Article  PubMed  Google Scholar 

  40. Kato K, Cantwell MJ, Sharma S, et al. Gene transfer of CD40-ligand induces autologous immune recognition of chronic lymphocytic leukemia B cells. J Clin Invest. 1998;101:1133–41.

    Article  PubMed  CAS  Google Scholar 

  41. Wierda WG, Cantwell MJ, Woods SJ, et al. CD40-ligand (CD154) gene therapy for chronic lymphocytic leukemia. Blood. 2000;96(9):2917–24.

    PubMed  CAS  Google Scholar 

  42. • Wierda WG, Castro JE, Aguillon R, et al.: A phase I study of immune gene therapy for patients with CLL using a membrane-stable, humanized CD154. Leukemia 2010, 24:1893–900. This study of immune gene therapy with humanized CD154 demonstrated clinical responses and avoided the induction of an immune response seen with murine CD154.

    Article  PubMed  CAS  Google Scholar 

  43. Jak M, van Bochove GG, van Lier RA, et al. CD40 stimulation sensitizes CLL cells to rituximab-induced cell death. Leukemia. 2011;25:968–78.

    Article  PubMed  CAS  Google Scholar 

  44. Scielzo C, Apollonio B, Scarfò L, et al. The functional in vitro response to CD40 ligation reflects a different clinical outcome in patients with chronic lymphocytic leukemia. Leukemia. 2011;25:1760–7.

    Article  PubMed  CAS  Google Scholar 

  45. •• Chen CI, Bergsagel PL, Paul H, et al.: Single-agent lenalidomide in the treatment of previously untreated chronic lymphocytic leukemia. J Clin Oncol 2010, 29:1175–81. This study shows that single-agent lenalidomide has efficacy comparable to that of cytotoxic agents in treating previously untreated CLL.

    Article  PubMed  Google Scholar 

  46. • Badoux XC, Keating MJ, Wen S, et al.: Lenalidomide as initial therapy of elderly patients with chronic lymphocytic leukemia. Blood 2011, 118:3489–98. This trial demonstrates the efficacy of lenalidomide in elderly patients with CLL, highlighting its potential as a treatment for this subgroup.

    Article  PubMed  CAS  Google Scholar 

  47. Andritsos LA, Johnson AJ, Lozanski G, et al. Higher doses of lenalidomide are associated with unacceptable toxicity including life-threatening tumor flare in patients with chronic lymphocytic leukemia. J Clin Oncol. 2008;26:2519–25.

    Article  PubMed  CAS  Google Scholar 

  48. Chanan-Khan A, Miller KC, Lawrence D, et al. Tumor flare reaction associated with lenalidomide treatment in patients with chronic lymphocytic leukemia predicts clinical response. Cancer. 2010;117:2127–35.

    Article  PubMed  Google Scholar 

  49. Brown JR, Abramson J, Hochberg E, et al. A phase I study of lenalidomide in combination with fludarabine and rituximab in previously untreated CLL/SLL. Leukemia. 2010;24:1972–5.

    Article  PubMed  CAS  Google Scholar 

  50. Corral LG, Haslett PA, Muller GW, et al. Differential cytokine modulation and T cell activation by two distinct classes of thalidomide analogues that are potent inhibitors of TNF-alpha. J Immunol. 1999;163:380–6.

    PubMed  CAS  Google Scholar 

  51. LeBlanc R, Hideshima T, Catley LP, et al. Immunomodulatory drug costimulates T cells via the B7-CD28 pathway. Blood. 2004;103:1787–90.

    Article  PubMed  CAS  Google Scholar 

  52. Haslett PA, Hanekom WA, Muller G, et al. Thalidomide and a thalidomide analogue drug costimulate virus-specific CD8+ T cells in vitro. J Infect Dis. 2003;187:946–55.

    Article  PubMed  CAS  Google Scholar 

  53. Lapalombella R, Andritsos L, Liu Q, et al. Lenalidomide treatment promotes CD154 expression on CLL cells and enhances production of antibodies by normal B Cells through a PI3-kinase dependent pathway. Blood. 2009;115:2619–29.

    Article  PubMed  Google Scholar 

  54. Galustian C, Meyer B, Labarthe MC, et al. The anti-cancer agents lenalidomide and pomalidomide inhibit the proliferation and function of T regulatory cells. Cancer Immunol Immunother. 2009;58:1033–45.

    Article  PubMed  CAS  Google Scholar 

  55. Davies FE, Raje N, Hideshima T, et al. Thalidomide and immunomodulatory derivatives augment natural killer cell cytotoxicity in multiple myeloma. Blood. 2001;98:210–6.

    Article  PubMed  CAS  Google Scholar 

  56. Idler I, Giannopoulos K, Zenz T, et al. Lenalidomide treatment of chronic lymphocytic leukaemia patients reduces regulatory T cells and induces Th17 T helper cells. Br J Haematol. 2009;148:948–50.

    Article  PubMed  Google Scholar 

  57. Gribben JG, Hosing C, Maloney DG. Stem cell transplantation for indolent lymphoma and chronic lymphocytic leukemia. Biol Blood Marrow Transplant. 2011;17:S63–70.

    Article  PubMed  Google Scholar 

  58. Rosenberg SA, Yang JC, Sherry RM, et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Cancer Res. 2011;17:4550–7.

    Article  PubMed  CAS  Google Scholar 

  59. Rooney CM, Smith CA, Ng CY, et al. Infusion of cytotoxic T cells for the prevention and treatment of Epstein-Barr virus-induced lymphoma in allogeneic transplant recipients. Blood. 1998;92:1549–55.

    PubMed  CAS  Google Scholar 

  60. Morgan RA, Dudley ME, Wunderlich JR, et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science. 2006;314:126–9.

    Article  PubMed  CAS  Google Scholar 

  61. June CH, Blazar BR, Riley JL. Engineering lymphocyte subsets: tools, trials and tribulations. Nat Rev Immunol. 2009;9:704–16.

    Article  PubMed  CAS  Google Scholar 

  62. Cartellieri M, Bachmann M, Feldmann A, et al. Chimeric antigen receptor-engineered T cells for immunotherapy of cancer. J Biomed Biotechnol. 2010;2010:956304.

    Article  PubMed  Google Scholar 

  63. Koehler P, Schmidt P, Hombach AA, et al. Engineered T cells for the adoptive therapy of B-cell chronic lymphocytic leukaemia. Adv Hematol. 2011;2012:595060.

    PubMed  Google Scholar 

  64. Hudecek M, Schmitt TM, Baskar S, et al. The B-cell tumor associated antigen ROR1 can be targeted with T-cells modified to express a ROR1-specific chimeric antigen receptor. Blood. 2010;116:4532–41.

    Article  PubMed  CAS  Google Scholar 

  65. Giordano Attianese GM, Marin V, Hoyos V, et al. In vitro and in vivo model of a novel immunotherapy approach for chronic lymphocytic leukemia by anti-CD23 chimeric antigen receptor. Blood. 2011;117:4736–45.

    Article  PubMed  Google Scholar 

  66. Kochenderfer JN, Yu Z, Frasheri D, et al. Adoptive transfer of syngeneic T cells transduced with a chimeric antigen receptor that recognizes murine CD19 can eradicate lymphoma and normal B cells. Blood. 2010;116:3875–86.

    Article  PubMed  CAS  Google Scholar 

  67. Brentjens RJ, Latouche JB, Santos E, et al. Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and interleukin-15. Nat Med. 2003;9:279–86.

    Article  PubMed  CAS  Google Scholar 

  68. Maher J, Brentjens RJ, Gunset G, et al. Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRzeta /CD28 receptor. Nat Biotechnol. 2002;20:70–5.

    Article  PubMed  CAS  Google Scholar 

  69. Kochenderfer JN, Wilson WH, Janik JE, et al. Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically-engineered to recognize CD19. Blood. 2010;116:4099–102.

    Article  PubMed  CAS  Google Scholar 

  70. Kochenderfer JN, Dudley ME, Stetler-Stevenson M, et al.: A Phase I Clinical Trial of Treatment of B-Cell Malignancies with Autologous Anti-CD19-CAR-Transduced T cells. Blood 2010, 116: Abstract 2865.

  71. Brentjens R, Yeh R, Bernal Y, et al. Treatment of chronic lymphocytic leukemia with genetically targeted autologous T cells: case report of an unforeseen adverse event in a phase I clinical trial. Mol Ther. 2010;18:666–8.

    Article  PubMed  CAS  Google Scholar 

  72. Brentjens RJ, Riviere I, Park JH, et al.: Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood 2011.

  73. • Porter DL, Levine BL, Kalos M, et al.: Chimeric Antigen Receptor–Modified T cells in Chronic Lymphoid Leukemia. N Engl J Med 2011, 365:725–33. This case report provides a proof-of-concept base for the use of chimeric antigen receptor–modified T cells in CLL.

    Article  PubMed  CAS  Google Scholar 

  74. Kalos M, Levine BL, Porter DL, et al.: T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med 2011, 3:95ra73.

    Google Scholar 

  75. Milone MC, Fish JD, Carpenito C, et al. Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Mol Ther. 2009;17:1453–64.

    Article  PubMed  CAS  Google Scholar 

  76. Aue G, Njuguna N, Tian X, et al. Lenalidomide-induced upregulation of CD80 on tumor cells correlates with T-cell activation, the rapid onset of a cytokine release syndrome and leukemic cell clearance in chronic lymphocytic leukemia. Haematologica. 2009;94:1266–73.

    Article  PubMed  CAS  Google Scholar 

  77. Urba WJ, Longo DL. Redirecting T cells. N Engl J Med. 2011;365:754–7.

    Article  PubMed  CAS  Google Scholar 

  78. Wherry EJ. T cell exhaustion. Nat Immunol. 2011;12:492–9.

    Article  PubMed  CAS  Google Scholar 

  79. Boissel L, Betancur M, Wels WS, et al. Transfection with mRNA for CD19 specific chimeric antigen receptor restores NK cell mediated killing of CLL cells. Leuk Res. 2009;33:1255–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure

Conflicts of Interest: J. Riches: none; A. Ramsay: none; J. Gribben: Consultancy fees from Merck, Celgene; honoraria from Roche/Genentech, GlaxoSmithKline, Mundipharma.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John G. Gribben.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riches, J.C., Ramsay, A.G. & Gribben, J.G. Immune Reconstitution in Chronic Lymphocytic Leukemia. Curr Hematol Malig Rep 7, 13–20 (2012). https://doi.org/10.1007/s11899-011-0106-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-011-0106-x

Keywords

Navigation