Skip to main content

Advertisement

Log in

The anti-cancer agents lenalidomide and pomalidomide inhibit the proliferation and function of T regulatory cells

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Lenalidomide (Revlimid®; CC-5013) and pomalidomide (CC-4047) are IMiDs® proprietary drugs having immunomodulatory properties that have both shown activity in cancer clinical trials; lenalidomide is approved in the United States for a subset of MDS patients and for treatment of patients with multiple myeloma when used in combination with dexamethasone. These drugs exhibit a range of interesting clinical properties, including anti-angiogenic, anti-proliferative, and pro-erythropoietic activities although exact cellular target(s) remain unclear. Also, anti-inflammatory effects on LPS-stimulated monocytes (TNF-α is decreased) and costimulatory effects on anti-CD3 stimulated T cells, (enhanced T cell proliferation and proinflammatory cytokine production) are observed These drugs also cause augmentation of NK-cell cytotoxic activity against tumour-cell targets. Having shown that pomalidomide confers T cell-dependant adjuvant-like protection in a preclinical whole tumour-cell vaccine-model, we now show that lenalidomide and pomalidomide strongly inhibit T-regulatory cell proliferation and suppressor-function. Both drugs inhibit IL-2-mediated generation of FOXP3 positive CTLA-4 positive CD25high CD4+ T regulatory cells from PBMCs by upto 50%. Furthermore, suppressor function of pre-treated T regulatory cells against autologous responder-cells is abolished or markedly inhibited without drug related cytotoxicity. Also, Balb/C mice exhibit 25% reduction of lymph-node T regulatory cells after pomalidomide treatment. Inhibition of T regulatory cell function was not due to changes in TGF-β or IL-10 production but was associated with decreased T regulatory cell FOXP3 expression. In conclusion, our data provide one explanation for adjuvant properties of lenalidomide and pomalidomide and suggest that they may help overcome an important barrier to tumour-specific immunity in cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Antony PA, Paulos CM, Ahmadzadeh M, Akpinarli A, Palmer DC, Sato N, Kaiser A, Hinrichs CS, Klebanoff CA, Tagaya Y, Restifo NP (2006) Interleukin-2-dependent mechanisms of tolerance and immunity in vivo. J Immunol 176:5255–5266

    PubMed  CAS  Google Scholar 

  2. Antony PA, Restifo NP (2002) Do CD4+CD25+ immunoregulatory T cells hinder tumor immunotherapy? J Immunother 25:202–206

    Article  PubMed  CAS  Google Scholar 

  3. Baecher-Allan C, Anderson DE (2006) Immune regulation in tumor-bearing hosts. Curr Opin Immunol 18:214–219

    Article  PubMed  CAS  Google Scholar 

  4. Bartlett JB, Dredge K, Dalgleish AG (2004) The evolution of thalidomide and its IMiD derivatives as anticancer agents. Nat Rev Cancer 4:314–322

    Article  PubMed  CAS  Google Scholar 

  5. Bartlett JB, Michael A, Clarke IA, Dredge K, Nicholson S, Kristeleit H, Polychronis A, Pandha H, Muller GW, Stirling DI, Zeldis J, Dalgleish AG (2004) Phase I study to determine the safety, tolerability and immunostimulatory activity of thalidomide analogue CC-5013 in patients with metastatic malignant melanoma and other advanced cancers. Br J Cancer 90:955–961

    Article  PubMed  CAS  Google Scholar 

  6. Bettelli E, Dastrange M, Oukka M (2005) Foxp3 interacts with nuclear factor of activated T cells and NF-kappa B to repress cytokine gene expression and effector functions of T helper cells. Proc Natl Acad Sci USA 102:5138–5143

    Article  PubMed  CAS  Google Scholar 

  7. Beyer M, Kochanek M, Giese T, Endl E, Weihrauch MR, Knolle PA, Classen S, Schultze JL (2006) In vivo peripheral expansion of naive CD4+CD25high FOXP3+ regulatory T cells in patients with multiple myeloma. Blood 107:3940–3949

    Article  PubMed  CAS  Google Scholar 

  8. Beyer M, Schultze JL (2006) Regulatory T cells in cancer. Blood 108:804–811

    Article  PubMed  CAS  Google Scholar 

  9. Calmels B, Paul S, Futin N, Ledoux C, Stoeckel F, Acres B (2005) Bypassing tumor-associated immune suppression with recombinant adenovirus constructs expressing membrane bound or secreted GITR-L. Cancer Gene Ther 12:198–205

    Article  PubMed  CAS  Google Scholar 

  10. Chanan-Khan A, Miller KC, Takeshita K, Koryzna A, Donohue K, Bernstein ZP, Mohr A, Klippenstein D, Wallace P, Zeldis JB, Berger C, Czuczman MS (2005) Results of a phase 1 clinical trial of thalidomide in combination with fludarabine as initial therapy for patients with treatment-requiring chronic lymphocytic leukemia (CLL). Blood 106:3348–3352

    Article  PubMed  CAS  Google Scholar 

  11. Chang DH, Liu N, Klimek V, Hassoun H, Mazumder A, Nimer SD, Jagannath S, Dhodapkar MV (2006) Enhancement of ligand dependent activation of human natural killer T cells by Lenalidomide: therapeutic implications. Blood 108:618–621

    Article  PubMed  CAS  Google Scholar 

  12. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Evdemon-Hogan M, Conejo-Garcia JR, Zhang L, Burow M, Zhu Y, Wei S, Kryczek I, Daniel B, Gordon A, Myers L, Lackner A, Disis ML, Knutson KL, Chen L, Zou W (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10:942–949

    Article  PubMed  CAS  Google Scholar 

  13. Dannull J, Su Z, Rizzieri D, Yang BK, Coleman D, Yancey D, Zhang A, Dahm P, Chao N, Gilboa E, Vieweg J (2005) Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J Clin Invest 115:3623–3633

    Article  PubMed  CAS  Google Scholar 

  14. Davies FE, Raje N, Hideshima T, Lentzsch S, Young G, Tai YT, Lin B, Podar K, Gupta D, Chauhan D, Treon SP, Richardson PG, Schlossman RL, Morgan GJ, Muller GW, Stirling DI, Anderson KC (2001) Thalidomide and immunomodulatory derivatives augment natural killer cell cytotoxicity in multiple myeloma. Blood 98:210–216

    Article  PubMed  CAS  Google Scholar 

  15. de Parseval LM, Brady H, Glezer E, Richard N, Muller G, Morris CL, Stirling D, Chan K (2004) Novel immunomodulatory drugs (IMiDs(R)): a potential, new therapy for {beta}-hemoglobinopathies. ASH Annu Meet Abstr 104:3740

    Google Scholar 

  16. Diederichsen ACP, Zeuthen J, Christensen PB, Kristensen T (1999) Characterisation of tumour infiltrating lymphocytes and correlations with immunological surface molecules in colorectal cancer. Eur J Cancer 35:721–726

    Article  PubMed  CAS  Google Scholar 

  17. Dimopoulos MA, Spencer A, Attal M, Prince M, Harousseau JL, Dmoszynska A, Yu Z, Olesnyckyj M, Zeldis J, Knight R (2005) Study of lenalidomide plus dexamethasone versus dexamethasone alone in relapsed or refractory multiple myeloma (MM): results of a phase 3 study (MM-010). ASH Annu Meet Abstr 106:6

    Google Scholar 

  18. Dredge K, Marriott JB, Todryk SM, Muller GW, Chen R, Stirling DI, Dalgleish AG (2002) Protective antitumor immunity induced by a costimulatory thalidomide analog in conjunction with whole tumor cell vaccination is mediated by increased Th1-type immunity. J Immunol 168:4914–4919

    PubMed  CAS  Google Scholar 

  19. Egen JG, Kuhns MS, Allison JP (2002) CTLA-4: new insights into its biological function and use in tumor immunotherapy. Nat Immunol 3:611–618

    Article  PubMed  CAS  Google Scholar 

  20. Fine HA, Kim L, Albert PS, Duic JP, Ma H, Zhang W, Tohnya T, Figg WD, Royce C (2007) A phase I trial of lenalidomide in patients with recurrent primary central nervous system tumors. Clin Cancer Res 13:7101–7106

    Article  PubMed  CAS  Google Scholar 

  21. Foss F (2006) Clinical experience with denileukin diftitox (ONTAK). Semin Oncol 33:S11–S16

    Article  PubMed  CAS  Google Scholar 

  22. Foss FM (2000) DAB(389)IL-2 (denileukin diftitox, ONTAK): a new fusion protein technology. Clin Lymphoma 1 Suppl 1:S27–S31

    Article  PubMed  CAS  Google Scholar 

  23. Galustian C, Klaschka D, Labarthe MC, Bartlett JB, Dalgleish AG (2004) The immunomodulatory drug (IMID (R)) CC-4047 enhances the proliferation and anti-tumor function of gamma delta T cells. J Immunother 27:S50

    Article  Google Scholar 

  24. Galustian C, Labarthe MC, Bartlett JB, Dalgleish AG (2004) Thalidomide-derived immunomodulatory drugs as therapeutic agents. Expert Opin Biol Ther 4:1963–1970

    Article  PubMed  CAS  Google Scholar 

  25. Ghiringhelli F, Larmonier N, Schmitt E, Parcellier A, Cathelin D, Garrido C, Chauffert B, Solary E, Bonnotte B, Martin F (2004) CD4+CD25+ regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative. Eur J Immunol 34:336–344

    Article  PubMed  CAS  Google Scholar 

  26. Golgher D, Jones E, Powrie F, Elliott T, Gallimore A (2002) Depletion of CD25+ regulatory cells uncovers immune responses to shared murine tumor rejection antigens. Eur J Immunol 32:3267–3275

    Article  PubMed  CAS  Google Scholar 

  27. Hanekom WA, Hughes J, Haslett PA, Apolles P, Ganiso V, Allin R, Goddard E, Hussey GD, Kaplan G (2001) The immunomodulatory effects of thalidomide on human immunodeficiency virus-infected children. J Infect Dis 184:1192–1196

    Article  PubMed  CAS  Google Scholar 

  28. Haslett PA, Corral LG, Albert M, Kaplan G (1998) Thalidomide costimulates primary human T lymphocytes, preferentially inducing proliferation, cytokine production, and cytotoxic responses in the CD8+ subset. J Exp Med 187:1885–1892

    Article  PubMed  CAS  Google Scholar 

  29. Haslett PA, Hanekom WA, Muller G, Kaplan G (2003) Thalidomide and a thalidomide analogue drug costimulate virus-specific CD8+ T cells in vitro. J Infect Dis 187:946–955

    Article  PubMed  CAS  Google Scholar 

  30. Hayashi T, Hideshima T, Akiyama M, Podar K, Yasui H, Raje N, Kumar S, Chauhan D, Treon SP, Richardson P, Anderson KC (2005) Molecular mechanisms whereby immunomodulatory drugs activate natural killer cells: clinical application. Br J Haematol 128:192–203

    Article  PubMed  CAS  Google Scholar 

  31. Hirahara K, Liu L, Clark RA, Yamanaka K, Fuhlbrigge RC, Kupper TS (2006) The majority of human peripheral blood CD4+CD25highFoxp3+ regulatory T cells bear functional skin-homing receptors. J Immunol 177:4488–4494

    PubMed  CAS  Google Scholar 

  32. Hoffmann P, Eder R, Kunz-Schughart LA, Andreesen R, Edinger M (2004) Large-scale in vitro expansion of polyclonal human CD4(+)CD25high regulatory T cells. Blood 104:895–903

    Article  PubMed  CAS  Google Scholar 

  33. Hori S, Sakaguchi S (2004) Foxp3: a critical regulator of the development and function of regulatory T cells. Microbes Infect 6:745–751

    Article  PubMed  CAS  Google Scholar 

  34. Ichihara F, Kono K, Takahashi A, Kawaida H, Sugai H, Fujii H (2003) Increased populations of regulatory T cells in peripheral blood and tumor-infiltrating lymphocytes in patients with gastric and esophageal cancers. Clin Cancer Res 9:4404–4408

    PubMed  Google Scholar 

  35. Jones E, hm-Vicker M, Simon AK, Green A, Powrie F, Cerundolo V, Gallimore A (2002) Depletion of CD25+ regulatory cells results in suppression of melanoma growth and induction of autoreactivity in mice. Cancer Immun 2:1

    PubMed  Google Scholar 

  36. Jonuleit H, Schmitt E, Stassen M, Tuettenberg A, Knop J, Enk AH (2001) Identification and functional characterization of human CD4(+)CD25(+) T cells with regulatory properties isolated from peripheral blood. J Exp Med 193:1285–1294

    Article  PubMed  CAS  Google Scholar 

  37. Koh KR, Janz M, Mapara MY, Lemke B, Stirling D, Dorken B, Zenke M, Lentzsch S (2005) Immunomodulatory derivative of thalidomide (IMiD CC-4047) induces a shift in lineage commitment by suppressing erythropoiesis and promoting myelopoiesis. Blood 105:3833–3840

    Article  PubMed  CAS  Google Scholar 

  38. Lan RY, Ansari AA, Lian ZX, Gershwin ME (2005) Regulatory T cells: development, function and role in autoimmunity. Autoimmun Rev 4:351–363

    Article  PubMed  CAS  Google Scholar 

  39. Lentzsch S, LeBlanc R, Podar K, Davies F, Lin B, Hideshima T, Catley L, Stirling DI, Anderson KC (2003) Immunomodulatory analogs of thalidomide inhibit growth of Hs Sultan cells and angiogenesis in vivo. Leukemia 17:41–44

    Article  PubMed  CAS  Google Scholar 

  40. List A, Kurtin S, Roe DJ, Buresh A, Mahadevan D, Fuchs D, Rimsza L, Heaton R, Knight R, Zeldis JB (2005) Efficacy of lenalidomide in myelodysplastic syndromes. N Engl J Med 352:549–557

    Article  PubMed  CAS  Google Scholar 

  41. Liyanage UK, Moore TT, Joo HG, Tanaka Y, Herrmann V, Doherty G, Drebin JA, Strasberg SM, Eberlein TJ, Goedegebuure PS et al (2002) Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol 169: 2756–2761 (Baltimore, Md: 1950)

    Google Scholar 

  42. Loke P, Allison JP (2004) Emerging mechanisms of immune regulation: the extended B7 family and regulatory T cells. Arthritis Res Ther 6:208–214

    Article  PubMed  CAS  Google Scholar 

  43. Marriott JB, Clarke IA, Dredge K, Muller G, Stirling D, Dalgleish AG (2002) Thalidomide and its analogues have distinct and opposing effects on TNF-alpha and TNFR2 during co-stimulation of both CD4(+) and CD8(+) T cells. Clin Exp Immunol 130:75–84

    Article  PubMed  CAS  Google Scholar 

  44. Mitsiades N, Mitsiades CS, Poulaki V, Chauhan D, Richardson PG, Hideshima T, Munshi NC, Treon SP, Anderson KC (2002) Apoptotic signaling induced by immunomodulatory thalidomide analogs in human multiple myeloma cells: therapeutic implications. Blood 99:4525–4530

    Article  PubMed  CAS  Google Scholar 

  45. Motta M, Rassenti L, Shelvin BJ, Lerner S, Kipps TJ, Keating MJ, Wierda WG (2005) Increased expression of CD152 (CTLA-4) by normal T lymphocytes in untreated patients with B-cell chronic lymphocytic leukemia. Leukemia 19:1788–1793

    Article  PubMed  CAS  Google Scholar 

  46. Nocentini G, Riccardi C (2005) GITR: a multifaceted regulator of immunity belonging to the tumor necrosis factor receptor superfamily. Eur J Immunol 35:1016–1022

    Article  PubMed  CAS  Google Scholar 

  47. Nolte-’t Hoen EN, Wagenaar-Hilbers JP, Boot EP, Lin CH, Arkesteijn GJ, van EW, Taams LS, Wauben MH (2004) Identification of a CD4+CD25+ T cell subset committed in vivo to suppress antigen-specific T cell responses without additional stimulation. Eur J Immunol 34:3016–3027

    Article  PubMed  Google Scholar 

  48. Olsen E, Duvic M, Frankel A, Kim Y, Martin A, Vonderheid E, Jegasothy B, Wood G, Gordon M, Heald P, Oseroff A, Pinter-Brown L, Bowen G, Kuzel T, Fivenson D, Foss F, Glode M, Molina A, Knobler E, Stewart S, Cooper K, Stevens S, Craig F, Reuben J, Bacha P, Nichols J (2001) Pivotal phase III trial of two dose levels of denileukin diftitox for the treatment of cutaneous T-cell lymphoma. J Clin Oncol 19:376–388

    PubMed  CAS  Google Scholar 

  49. Querfeld C, Kuzel TM, Guitart J, Rosen ST (2005) Preliminary results of a phase II study of CC-5013 (lenalidomide, revlimid (R)) in patients with cutaneous T-cell lymphoma. Blood 106:936A–937A

    Google Scholar 

  50. Sato E, Olson SH, Ahn J, Bundy B, Nishikawa H, Qian F, Jungbluth AA, Frosina D, Gnjatic S, Ambrosone C, Kepner J, Odunsi T, Ritter G, Lele S, Chen YT, Ohtani H, Old LJ, Odunsi K (2005) Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. PNAS 102:18538–18543

    Article  PubMed  CAS  Google Scholar 

  51. Schey SA, Fields P, Bartlett JB, Clarke IA, Ashan G, Knight RD, Streetly M, Dalgleish AG (2004) Phase I study of an immunomodulatory thalidomide analog, CC-4047, in relapsed or refractory multiple myeloma. J Clin Oncol 22:3269–3276

    Article  PubMed  CAS  Google Scholar 

  52. Schubert LA, Jeffery E, Zhang Y, Ramsdell F, Ziegler SF (2001) Scurfin (FOXP3) acts as a repressor of transcription and regulates T cell activation. J Biol Chem 276:37672–37679

    Article  PubMed  CAS  Google Scholar 

  53. Shevach EM (2002) CD4+CD25+ suppressor T cells: more questions than answers. Nat Rev Immunol 2:389–400

    PubMed  CAS  Google Scholar 

  54. Streetly MJ, Gyertson K, Daniel Y, Zeldis JB, Kazmi M, Schey SA (2008) Alternate day pomalidomide retains anti-myeloma effect with reduced adverse events and evidence of in vivo immunomodulation. Br J Haematol 141:41–51

    Article  PubMed  CAS  Google Scholar 

  55. Sutmuller RP, van Duivenvoorde LM, van EA, Schumacher TN, Wildenberg ME, Allison JP, Toes RE, Offringa R, Melief CJ (2001) Synergism of cytotoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25(+) regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses. J Exp Med 194:823–832

    Article  PubMed  CAS  Google Scholar 

  56. Takahashi T, Kuniyasu Y, Toda M, Sakaguchi N, Itoh M, Iwata M, Shimizu J, Sakaguchi S (1998) Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int Immunol 10:1969–1980

    Article  PubMed  CAS  Google Scholar 

  57. Takeda I, Ine S, Killeen N, Ndhlovu LC, Murata K, Satomi S, Sugamura K, Ishii N (2004) Distinct roles for the OX40-OX40 ligand interaction in regulatory and nonregulatory T cells. J Immunol 172:3580–3589

    PubMed  CAS  Google Scholar 

  58. Teo SK, Colburn WA, Tracewell WG, Kook KA, Stirling DI, Jaworsky MS, Scheffler MA, Thomas SD, Laskin OL (2004) Clinical pharmacokinetics of thalidomide. Clin Pharmacokinet 43:311–327

    Article  PubMed  CAS  Google Scholar 

  59. Trzonkowski P, Szmit E, Mysliwska J, Dobyszuk A, Mysliwski A (2004) CD4+CD25+ T regulatory cells inhibit cytotoxic activity of T CD8+ and NK lymphocytes in the direct cell-to-cell interaction. Clin Immunol 112:258–267

    Article  PubMed  CAS  Google Scholar 

  60. Valzasina B, Guiducci C, Dislich H, Killeen N, Weinberg AD, Colombo MP (2005) Triggering of OX40 (CD134) on CD4(+)CD25+ T cells blocks their inhibitory activity: a novel regulatory role for OX40 and its comparison with GITR. Blood 105:2845–2851

    Article  PubMed  CAS  Google Scholar 

  61. Valzasina B, Piconese S, Guiducci C, Colombo MP (2006) Tumor-induced expansion of regulatory T cells by conversion of CD4+CD25− lymphocytes is thymus and proliferation independent. Cancer Res 66:4488–4495

    Article  PubMed  CAS  Google Scholar 

  62. Walsh PT, Benoit BM, Wysocka M, Dalton NM, Turka LA, Rook AH (2006) A role for regulatory T cells in cutaneous T-cell lymphoma; induction of a CD4+CD25+Foxp3+ T-cell phenotype associated with HTLV-1 infection. J Invest Dermatol 126:690–692

    Article  PubMed  CAS  Google Scholar 

  63. Wei WZ, Morris GP, Kong YC (2004) Anti-tumor immunity and autoimmunity: a balancing act of regulatory T cells. Cancer Immunol Immunother 53:73–78

    Article  PubMed  CAS  Google Scholar 

  64. Wolf AM, Wolf D, Steurer M, Gastl G, Gunsilius E, Grubeck-Loebenstein B (2003) Increase of regulatory T cells in the peripheral blood of cancer patients. Clin Cancer Res 9:606–612

    PubMed  Google Scholar 

  65. Yang ZZ, Novak AJ, Stenson MJ, Witzig TE, Ansell SM (2006) Intratumoral CD4+CD25+ regulatory T-cell-mediated suppression of infiltrating CD4+ T cells in B-cell non-Hodgkin lymphoma. Blood 107:3639–3646

    Article  PubMed  CAS  Google Scholar 

  66. Zorn E, Nelson EA, Mohseni M, Porcheray F, Kim H, Litsa D, Bellucci R, Raderschall E, Canning C, Soiffer RJ, Frank DA, Ritz J (2006) IL-2 regulates FOXP3 expression in human CD4+CD25+ regulatory T cells through a STAT-dependent mechanism and induces the expansion of these cells in vivo. Blood 108:1571–1579

    Article  PubMed  CAS  Google Scholar 

  67. Zou W (2006) Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 6:295–307

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Galustian.

Additional information

Marie-Christine Labarthe and Keith Dredge contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galustian, C., Meyer, B., Labarthe, MC. et al. The anti-cancer agents lenalidomide and pomalidomide inhibit the proliferation and function of T regulatory cells. Cancer Immunol Immunother 58, 1033–1045 (2009). https://doi.org/10.1007/s00262-008-0620-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-008-0620-4

Keywords

Navigation