Skip to main content

Advertisement

Log in

Amyloidosis in Heart Failure

  • Comorbidities of Heart Failure (C Angermann, Section Editor)
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Purpose

Amyloidosis represents an increasingly recognized but still frequently missed cause of heart failure. In the light of many effective therapies for light chain (AL) amyloidosis and promising new treatment options for transthyretin (ATTR) amyloidosis, awareness among caregivers needs to be raised to screen for amyloidosis as an important and potentially treatable differential diagnosis. This review outlines the diversity of cardiac amyloidosis, its relation to heart failure, the diagnostic algorithm, and therapeutic considerations that should be applied depending on the underlying type of amyloidosis.

Recent Findings

Non-biopsy diagnosis is feasible in ATTR amyloidosis in the absence of a monoclonal component resulting in higher detection rates of cardiac ATTR amyloidosis. Biomarker-guided staging systems have been updated to facilitate risk stratification according to currently available biomarkers independent of regional differences, but have not yet prospectively been tested. Novel therapies for hereditary and wild-type ATTR amyloidosis are increasingly available. The complex treatment options for AL amyloidosis are improving continuously, resulting in better survival and quality of life. Mortality in advanced cardiac amyloidosis remains high, underlining the importance of early diagnosis and treatment initiation.

Summary

Cardiac amyloidosis is characterized by etiologic and clinical heterogeneity resulting in a frequently delayed diagnosis and an inappropriately high mortality risk. New treatment options for this hitherto partially untreatable condition have become and will become available, but raise challenges regarding their implementation. Referral to specialized centers providing access to extensive and targeted diagnostic investigations and treatment initiation may help to face these challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Stork S, Handrock R, Jacob J, Walker J, Calado F, Lahoz R, et al. Epidemiology of heart failure in Germany: a retrospective database study. Clin Res Cardiol. 2017;106(11):913–22. https://doi.org/10.1007/s00392-017-1137-7.

    Article  PubMed  PubMed Central  Google Scholar 

  2. van Riet EE, Hoes AW, Wagenaar KP, Limburg A, Landman MA, Rutten FH. Epidemiology of heart failure: the prevalence of heart failure and ventricular dysfunction in older adults over time. A systematic review. Eur J Heart Fail. 2016;18(3):242–52. https://doi.org/10.1002/ejhf.483.

    Article  PubMed  Google Scholar 

  3. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2016;18(8):891–975. https://doi.org/10.1002/ejhf.592.

    Article  PubMed  Google Scholar 

  4. Triposkiadis F, Butler J, Abboud FM, Armstrong PW, Adamopoulos S, Atherton JJ, et al. The continuous heart failure spectrum: moving beyond an ejection fraction classification. Eur Heart J. 2019;40(26):2155–63. https://doi.org/10.1093/eurheartj/ehz158.

    Article  PubMed  Google Scholar 

  5. Bennani Smires Y, Victor G, Ribes D, Berry M, Cognet T, Mejean S, et al. Pilot study for left ventricular imaging phenotype of patients over 65 years old with heart failure and preserved ejection fraction: the high prevalence of amyloid cardiomyopathy. Int J Card Imaging. 2016;32(9):1403–13. https://doi.org/10.1007/s10554-016-0915-z.

    Article  Google Scholar 

  6. Gonzalez-Lopez E, Gallego-Delgado M, Guzzo-Merello G, de Haro-Del Moral FJ, Cobo-Marcos M, Robles C, et al. Wild-type transthyretin amyloidosis as a cause of heart failure with preserved ejection fraction. Eur Heart J. 2015;36(38):2585–94. https://doi.org/10.1093/eurheartj/ehv338.

    Article  PubMed  CAS  Google Scholar 

  7. Tanskanen M, Peuralinna T, Polvikoski T, Notkola IL, Sulkava R, Hardy J, et al. Senile systemic amyloidosis affects 25% of the very aged and associates with genetic variation in alpha2-macroglobulin and tau: a population-based autopsy study. Ann Med. 2008;40(3):232–9. https://doi.org/10.1080/07853890701842988.

    Article  PubMed  CAS  Google Scholar 

  8. Benson MD, Buxbaum JN, Eisenberg DS, Merlini G, Saraiva MJM, Sekijima Y, et al. Amyloid nomenclature 2018: recommendations by the International Society of Amyloidosis (ISA) nomenclature committee. Amyloid. 2018;25(4):215–9. https://doi.org/10.1080/13506129.2018.1549825.

    Article  PubMed  CAS  Google Scholar 

  9. Arciello A, Piccoli R, Monti DM. Apolipoprotein A-I: the dual face of a protein. FEBS Lett. 2016;590(23):4171–9. https://doi.org/10.1002/1873-3468.12468.

    Article  PubMed  CAS  Google Scholar 

  10. Palladini G, Merlini G. What is new in diagnosis and management of light chain amyloidosis? Blood. 2016;128(2):159–68. https://doi.org/10.1182/blood-2016-01-629790.

    Article  PubMed  CAS  Google Scholar 

  11. •• Gillmore JD, Maurer MS, Falk RH, Merlini G, Damy T, Dispenzieri A, et al. Nonbiopsy diagnosis of cardiac transthyretin amyloidosis. Circulation. 2016;133(24):2404–12. https://doi.org/10.1161/CIRCULATIONAHA.116.021612. Heart failure represents a common disorder. Aamyloidosis, mainly ATTRwt amyloidosis, seems to be the underlying disease in a significant part of HFpEF patients. Additionally, patients with cardiac amyloidosis, especially ATTRwt amyloidosis, are usually old and suffer from multiple comorbidities with resulting increased risk of interventions. Therefore, we need non-invasive screening tools.

    Article  PubMed  CAS  Google Scholar 

  12. Perugini E, Guidalotti PL, Salvi F, Cooke RM, Pettinato C, Riva L, et al. Noninvasive etiologic diagnosis of cardiac amyloidosis using 99mTc-3,3-diphosphono-1,2-propanodicarboxylic acid scintigraphy. J Am Coll Cardiol. 2005;46(6):1076–84. https://doi.org/10.1016/j.jacc.2005.05.073.

    Article  PubMed  Google Scholar 

  13. Kircher M, Ihne S, Brumberg J, Morbach C, Knop S, Kortum KM, et al. Detection of cardiac amyloidosis with (18)F-Florbetaben-PET/CT in comparison to echocardiography, cardiac MRI and DPD-scintigraphy. Eur J Nucl Med Mol Imaging. 2019;46(7):1407–16. https://doi.org/10.1007/s00259-019-04290-y.

    Article  PubMed  Google Scholar 

  14. Quarta CC, Obici L, Guidalotti PL, Pieroni M, Longhi S, Perlini S, et al. High 99mTc-DPD myocardial uptake in a patient with apolipoprotein AI-related amyloidotic cardiomyopathy. Amyloid. 2013;20(1):48–51. https://doi.org/10.3109/13506129.2012.746938.

    Article  PubMed  Google Scholar 

  15. Quarta CC, Gonzalez-Lopez E, Gilbertson JA, Botcher N, Rowczenio D, Petrie A, et al. Diagnostic sensitivity of abdominal fat aspiration in cardiac amyloidosis. Eur Heart J. 2017;38(24):1905–8. https://doi.org/10.1093/eurheartj/ehx047.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Comenzo RL, Zhang Y, Martinez C, Osman K, Herrera GA. The tropism of organ involvement in primary systemic amyloidosis: contributions of Ig V(L) germ line gene use and clonal plasma cell burden. Blood. 2001;98(3):714–20.

    Article  CAS  Google Scholar 

  17. Perfetti V, Casarini S, Palladini G, Vignarelli MC, Klersy C, Diegoli M, et al. Analysis of V (lambda)-J (lambda) expression in plasma cells from primary (AL) amyloidosis and normal bone marrow identifies 3r (lambdaIII) as a new amyloid-associated germline gene segment. Blood. 2002;100(3):948–53. https://doi.org/10.1182/blood-2002-01-0114.

    Article  PubMed  CAS  Google Scholar 

  18. Abraham RS, Geyer SM, Price-Troska TL, Allmer C, Kyle RA, Gertz MA, et al. Immunoglobulin light chain variable (V) region genes influence clinical presentation and outcome in light chain-associated amyloidosis (AL). Blood. 2003;101(10):3801–8. https://doi.org/10.1182/blood-2002-09-2707.

    Article  PubMed  CAS  Google Scholar 

  19. Perfetti V, Palladini G, Casarini S, Navazza V, Rognoni P, Obici L, et al. The repertoire of lambda light chains causing predominant amyloid heart involvement and identification of a preferentially involved germline gene, IGLV1-44. Blood. 2012;119(1):144–50. https://doi.org/10.1182/blood-2011-05-355784.

    Article  PubMed  CAS  Google Scholar 

  20. Kourelis TV, Dasari S, Theis JD, Ramirez-Alvarado M, Kurtin PJ, Gertz MA, et al. Clarifying immunoglobulin gene usage in systemic and localized immunoglobulin light-chain amyloidosis by mass spectrometry. Blood. 2017;129(3):299–306. https://doi.org/10.1182/blood-2016-10-743997.

    Article  PubMed  CAS  Google Scholar 

  21. Palladini G, Lavatelli F, Russo P, Perlini S, Perfetti V, Bosoni T, et al. Circulating amyloidogenic free light chains and serum N-terminal natriuretic peptide type B decrease simultaneously in association with improvement of survival in AL. Blood. 2006;107(10):3854–8. https://doi.org/10.1182/blood-2005-11-4385.

    Article  PubMed  CAS  Google Scholar 

  22. Palladini G, Campana C, Klersy C, Balduini A, Vadacca G, Perfetti V, et al. Serum N-terminal pro-brain natriuretic peptide is a sensitive marker of myocardial dysfunction in AL amyloidosis. Circulation. 2003;107(19):2440–5. https://doi.org/10.1161/01.CIR.0000068314.02595.B2.

    Article  PubMed  CAS  Google Scholar 

  23. Milani P, Merlini G, Palladini G. Light Chain Amyloidosis. Mediterr J Hematol Infect Dis. 2018;10(1):e2018022. https://doi.org/10.4084/MJHID.2018.022.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Mishra S, Guan J, Plovie E, Seldin DC, Connors LH, Merlini G, et al. Human amyloidogenic light chain proteins result in cardiac dysfunction, cell death, and early mortality in zebrafish. Am J Physiol Heart Circ Physiol. 2013;305(1):H95–103. https://doi.org/10.1152/ajpheart.00186.2013.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Liao R, Jain M, Teller P, Connors LH, Ngoy S, Skinner M, et al. Infusion of light chains from patients with cardiac amyloidosis causes diastolic dysfunction in isolated mouse hearts. Circulation. 2001;104(14):1594–7.

    Article  CAS  Google Scholar 

  26. Diomede L, Rognoni P, Lavatelli F, Romeo M, del Favero E, Cantu L, et al. A Caenorhabditis elegans-based assay recognizes immunoglobulin light chains causing heart amyloidosis. Blood. 2014;123(23):3543–52. https://doi.org/10.1182/blood-2013-10-525634.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Mishra S, Joshi S, Ward JE, Buys EP, Mishra D, Mishra D, et al. Zebrafish model of amyloid light chain cardiotoxicity: regeneration versus degeneration. Am J Physiol Heart Circ Physiol. 2019;316(5):H1158–H66. https://doi.org/10.1152/ajpheart.00788.2018.

    Article  PubMed  CAS  Google Scholar 

  28. Shi J, Guan J, Jiang B, Brenner DA, Del Monte F, Ward JE, et al. Amyloidogenic light chains induce cardiomyocyte contractile dysfunction and apoptosis via a non-canonical p38alpha MAPK pathway. Proc Natl Acad Sci U S A. 2010;107(9):4188–93. https://doi.org/10.1073/pnas.0912263107.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Diomede L, Romeo M, Rognoni P, Beeg M, Foray C, Ghibaudi E, et al. Cardiac light chain amyloidosis: the role of metal ions in oxidative stress and mitochondrial damage. Antioxid Redox Signal. 2017;27(9):567–82. https://doi.org/10.1089/ars.2016.6848.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Brenner DA, Jain M, Pimentel DR, Wang B, Connors LH, Skinner M, et al. Human amyloidogenic light chains directly impair cardiomyocyte function through an increase in cellular oxidant stress. Circ Res. 2004;94(8):1008–10. https://doi.org/10.1161/01.RES.0000126569.75419.74.

    Article  PubMed  CAS  Google Scholar 

  31. Guan J, Mishra S, Qiu Y, Shi J, Trudeau K, Las G, et al. Lysosomal dysfunction and impaired autophagy underlie the pathogenesis of amyloidogenic light chain-mediated cardiotoxicity. EMBO Mol Med. 2014;6(11):1493–507. https://doi.org/10.15252/emmm.201404190.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Palladini G, Barassi A, Klersy C, Pacciolla R, Milani P, Sarais G, et al. The combination of high-sensitivity cardiac troponin T (hs-cTnT) at presentation and changes in N-terminal natriuretic peptide type B (NT-proBNP) after chemotherapy best predicts survival in AL amyloidosis. Blood. 2010;116(18):3426–30. https://doi.org/10.1182/blood-2010-05-286567.

    Article  PubMed  CAS  Google Scholar 

  33. Blake CC, Geisow MJ, Swan ID, Rerat C, Rerat B. Strjcture of human plasma prealbumin at 2-5 A resolution. A preliminary report on the polypeptide chain conformation, quaternary structure and thyroxine binding. J Mol Biol. 1974;88(1):1–12. https://doi.org/10.1016/0022-2836(74)90291-5.

    Article  PubMed  CAS  Google Scholar 

  34. Ingbar SH. Pre-albumin: a thyroxinebinding protein of human plasma. Endocrinology. 1958;63(2):256–9. https://doi.org/10.1210/endo-63-2-256.

    Article  PubMed  CAS  Google Scholar 

  35. Raz A, Goodman DS. The interaction of thyroxine with human plasma prealbumin and with the prealbumin-retinol-binding protein complex. J Biol Chem. 1969;244(12):3230–7.

    PubMed  CAS  Google Scholar 

  36. Dickson PW, Aldred AR, Marley PD, Tu GF, Howlett GJ, Schreiber G. High prealbumin and transferrin mRNA levels in the choroid plexus of rat brain. Biochem Biophys Res Commun. 1985;127(3):890–5. https://doi.org/10.1016/s0006-291x(85)80027-9.

    Article  PubMed  CAS  Google Scholar 

  37. Soprano DR, Herbert J, Soprano KJ, Schon EA, Goodman DS. Demonstration of transthyretin mRNA in the brain and other extrahepatic tissues in the rat. J Biol Chem. 1985;260(21):11793–8.

    PubMed  CAS  Google Scholar 

  38. Marcoux J, Mangione PP, Porcari R, Degiacomi MT, Verona G, Taylor GW, et al. A novel mechano-enzymatic cleavage mechanism underlies transthyretin amyloidogenesis. EMBO Mol Med. 2015;7(10):1337–49. https://doi.org/10.15252/emmm.201505357.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Mangione PP, Porcari R, Gillmore JD, Pucci P, Monti M, Porcari M, et al. Proteolytic cleavage of Ser52Pro variant transthyretin triggers its amyloid fibrillogenesis. Proc Natl Acad Sci U S A. 2014;111(4):1539–44. https://doi.org/10.1073/pnas.1317488111.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Mangione PP, Verona G, Corazza A, Marcoux J, Canetti D, Giorgetti S, et al. Plasminogen activation triggers transthyretin amyloidogenesis in vitro. J Biol Chem. 2018;293(37):14192–9. https://doi.org/10.1074/jbc.RA118.003990.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Sekijima Y, Wiseman RL, Matteson J, Hammarstrom P, Miller SR, Sawkar AR, et al. The biological and chemical basis for tissue-selective amyloid disease. Cell. 2005;121(1):73–85. https://doi.org/10.1016/j.cell.2005.01.018.

    Article  PubMed  CAS  Google Scholar 

  42. Hammarstrom P, Jiang X, Hurshman AR, Powers ET, Kelly JW. Sequence-dependent denaturation energetics: a major determinant in amyloid disease diversity. Proc Natl Acad Sci U S A. 2002;99(Suppl 4):16427–32. https://doi.org/10.1073/pnas.202495199.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Klimtchuk ES, Prokaeva T, Frame NM, Abdullahi HA, Spencer B, Dasari S, et al. Unusual duplication mutation in a surface loop of human transthyretin leads to an aggressive drug-resistant amyloid disease. Proc Natl Acad Sci U S A. 2018;115(28):E6428–E36. https://doi.org/10.1073/pnas.1802977115.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Suhr OB, Lundgren E, Westermark P. One mutation, two distinct disease variants: unravelling the impact of transthyretin amyloid fibril composition. J Intern Med. 2017;281(4):337–47. https://doi.org/10.1111/joim.12585.

    Article  PubMed  CAS  Google Scholar 

  45. Maurer MS, Hanna M, Grogan M, Dispenzieri A, Witteles R, Drachman B, et al. Genotype and phenotype of transthyretin cardiac amyloidosis: THAOS (Transthyretin Amyloid Outcome Survey). J Am Coll Cardiol. 2016;68(2):161–72. https://doi.org/10.1016/j.jacc.2016.03.596.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Bergstrom J, Gustavsson A, Hellman U, Sletten K, Murphy CL, Weiss DT, et al. Amyloid deposits in transthyretin-derived amyloidosis: cleaved transthyretin is associated with distinct amyloid morphology. J Pathol. 2005;206(2):224–32. https://doi.org/10.1002/path.1759.

    Article  PubMed  CAS  Google Scholar 

  47. Ihse E, Rapezzi C, Merlini G, Benson MD, Ando Y, Suhr OB, et al. Amyloid fibrils containing fragmented ATTR may be the standard fibril composition in ATTR amyloidosis. Amyloid. 2013;20(3):142–50. https://doi.org/10.3109/13506129.2013.797890.

    Article  PubMed  CAS  Google Scholar 

  48. Ihse E, Ybo A, Suhr O, Lindqvist P, Backman C, Westermark P. Amyloid fibril composition is related to the phenotype of hereditary transthyretin V30 M amyloidosis. J Pathol. 2008;216(2):253–61. https://doi.org/10.1002/path.2411.

    Article  PubMed  CAS  Google Scholar 

  49. Pilebro B, Suhr OB, Naslund U, Westermark P, Lindqvist P, Sundstrom T. (99 m)Tc-DPD uptake reflects amyloid fibril composition in hereditary transthyretin amyloidosis. Ups J Med Sci. 2016;121(1):17–24. https://doi.org/10.3109/03009734.2015.1122687.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Pilebro B, Arvidsson S, Lindqvist P, Sundstrom T, Westermark P, Antoni G, et al. Positron emission tomography (PET) utilizing Pittsburgh compound B (PIB) for detection of amyloid heart deposits in hereditary transthyretin amyloidosis (ATTR). J Nucl Cardiol. 2018;25(1):240–8. https://doi.org/10.1007/s12350-016-0638-5.

    Article  PubMed  Google Scholar 

  51. Suhr OB, Lindqvist P, Olofsson BO, Waldenstrom A, Backman C. Myocardial hypertrophy and function are related to age at onset in familial amyloidotic polyneuropathy. Amyloid. 2006;13(3):154–9. https://doi.org/10.1080/13506120600876849.

    Article  PubMed  Google Scholar 

  52. Hornsten R, Pennlert J, Wiklund U, Lindqvist P, Jensen SM, Suhr OB. Heart complications in familial transthyretin amyloidosis: impact of age and gender. Amyloid. 2010;17(2):63–8. https://doi.org/10.3109/13506129.2010.483114.

    Article  PubMed  Google Scholar 

  53. Wixner J, Karling P, Rydh A, Hornsten R, Wiklund U, Anan I, et al. Gastric emptying in hereditary transthyretin amyloidosis: the impact of autonomic neuropathy. Neurogastroenterol Motil. 2012;24(12):1111–e568. https://doi.org/10.1111/j.1365-2982.2012.01991.x.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Wixner J, Mundayat R, Karayal ON, Anan I, Karling P, Suhr OB, et al. THAOS: gastrointestinal manifestations of transthyretin amyloidosis - common complications of a rare disease. Orphanet J Rare Dis. 2014;9:61. https://doi.org/10.1186/1750-1172-9-61.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Obici L, Merlini G. AA amyloidosis: basic knowledge, unmet needs and future treatments. Swiss Med Wkly. 2012;142:w13580. https://doi.org/10.4414/smw.2012.13580.

    Article  PubMed  CAS  Google Scholar 

  56. van der Hilst JC. Recent insights into the pathogenesis of type AA amyloidosis. ScientificWorldJournal. 2011;11:641–50. https://doi.org/10.1100/tsw.2011.64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Nakamura T, Higashi S, Tomoda K, Tsukano M, Baba S, Shono M. Significance of SAA1.3 allele genotype in Japanese patients with amyloidosis secondary to rheumatoid arthritis. Rheumatology (Oxford). 2006;45(1):43–9. https://doi.org/10.1093/rheumatology/kei112.

    Article  CAS  Google Scholar 

  58. Das M, Wilson CJ, Mei X, Wales TE, Engen JR, Gursky O. Structural stability and local dynamics in disease-causing mutants of human apolipoprotein A-I: what makes the protein amyloidogenic? J Mol Biol. 2016;428(2 Pt B):449–62. https://doi.org/10.1016/j.jmb.2015.10.029.

    Article  PubMed  CAS  Google Scholar 

  59. Benson MD, Liepnieks JJ, Yazaki M, Yamashita T, Hamidi Asl K, Guenther B, et al. A new human hereditary amyloidosis: the result of a stop-codon mutation in the apolipoprotein AII gene. Genomics. 2001;72(3):272–7. https://doi.org/10.1006/geno.2000.6499.

    Article  PubMed  CAS  Google Scholar 

  60. Yazaki M, Liepnieks JJ, Yamashita T, Guenther B, Skinner M, Benson MD. Renal amyloidosis caused by a novel stop-codon mutation in the apolipoprotein A-II gene. Kidney Int. 2001;60(5):1658–65. https://doi.org/10.1046/j.1523-1755.2001.00024.x.

    Article  PubMed  CAS  Google Scholar 

  61. Yazaki M, Liepnieks JJ, Barats MS, Cohen AH, Benson MD. Hereditary systemic amyloidosis associated with a new apolipoprotein AII stop codon mutation Stop78Arg. Kidney Int. 2003;64(1):11–6. https://doi.org/10.1046/j.1523-1755.2003.00047.x.

    Article  PubMed  CAS  Google Scholar 

  62. Feng D, Edwards WD, Oh JK, Chandrasekaran K, Grogan M, Martinez MW, et al. Intracardiac thrombosis and embolism in patients with cardiac amyloidosis. Circulation. 2007;116(21):2420–6. https://doi.org/10.1161/CIRCULATIONAHA.107.697763.

    Article  PubMed  Google Scholar 

  63. Witteles RM, Bokhari S, Damy T, Elliott PM, Falk RH, Fine NM, et al. Screening for transthyretin amyloid cardiomyopathy in everyday practice. JACC Heart Fail. 2019;7(8):709–16. https://doi.org/10.1016/j.jchf.2019.04.010.

    Article  PubMed  Google Scholar 

  64. Gonzalez-Duarte A, Valdes-Ferrer SI, Cantu-Brito C. Characteristics and natural history of autonomic involvement in hereditary ATTR amyloidosis: a systematic review. Clin Auton Res. 2019. https://doi.org/10.1007/s10286-019-00630-y.

    Article  Google Scholar 

  65. Rousseau A, Kaswin G, Adams D, Cauquil C, Theaudin M, Mincheva Z, et al. Ocular involvement in familial amyloid polyneuropathy. J Fr Ophtalmol. 2013;36(9):779–88. https://doi.org/10.1016/j.jfo.2013.04.005.

    Article  PubMed  CAS  Google Scholar 

  66. Herrick MK, DeBruyne K, Horoupian DS, Skare J, Vanefsky MA, Ong T. Massive leptomeningeal amyloidosis associated with a Val30Met transthyretin gene. Neurology. 1996;47(4):988–92. https://doi.org/10.1212/wnl.47.4.988.

    Article  PubMed  CAS  Google Scholar 

  67. Sakashita N, Ando Y, Jinnouchi K, Yoshimatsu M, Terazaki H, Obayashi K, et al. Familial amyloidotic polyneuropathy (ATTR Val30Met) with widespread cerebral amyloid angiopathy and lethal cerebral hemorrhage. Pathol Int. 2001;51(6):476–80. https://doi.org/10.1046/j.1440-1827.2001.01228.x.

    Article  PubMed  CAS  Google Scholar 

  68. Brett M, Persey MR, Reilly MM, Revesz T, Booth DR, Booth SE, et al. Transthyretin Leu12Pro is associated with systemic, neuropathic and leptomeningeal amyloidosis. Brain. 1999;122(Pt 2):183–90. https://doi.org/10.1093/brain/122.2.183.

    Article  PubMed  Google Scholar 

  69. Jin K, Sato S, Takahashi T, Nakazaki H, Date Y, Nakazato M, et al. Familial leptomeningeal amyloidosis with a transthyretin variant Asp18Gly representing repeated subarachnoid haemorrhages with superficial siderosis. J Neurol Neurosurg Psychiatry. 2004;75(10):1463–6. https://doi.org/10.1136/jnnp.2003.029942.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Nakagawa K, Sheikh SI, Snuderl M, Frosch MP, Greenberg SM. A new Thr49Pro transthyretin gene mutation associated with leptomeningeal amyloidosis. J Neurol Sci. 2008;272(1-2):186–90. https://doi.org/10.1016/j.jns.2008.05.014.

    Article  PubMed  CAS  Google Scholar 

  71. Maia LF, Magalhaes R, Freitas J, Taipa R, Pires MM, Osorio H, et al. CNS involvement in V30 M transthyretin amyloidosis: clinical, neuropathological and biochemical findings. J Neurol Neurosurg Psychiatry. 2015;86(2):159–67. https://doi.org/10.1136/jnnp-2014-308107.

    Article  PubMed  Google Scholar 

  72. Lobato L, Rocha A. Transthyretin amyloidosis and the kidney. Clin J Am Soc Nephrol. 2012;7(8):1337–46. https://doi.org/10.2215/CJN.08720811.

    Article  PubMed  CAS  Google Scholar 

  73. Westermark P, Westermark GT, Suhr OB, Berg S. Transthyretin-derived amyloidosis: probably a common cause of lumbar spinal stenosis. Ups J Med Sci. 2014;119(3):223–8. https://doi.org/10.3109/03009734.2014.895786.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Fosbol EL, Rorth R, Leicht BP, Schou M, Maurer MS, Kristensen SL, et al. Association of carpal tunnel syndrome with amyloidosis, heart failure, and adverse cardiovascular outcomes. J Am Coll Cardiol. 2019;74(1):15–23. https://doi.org/10.1016/j.jacc.2019.04.054.

    Article  PubMed  Google Scholar 

  75. Geller HI, Singh A, Alexander KM, Mirto TM, Falk RH. Association between ruptured distal biceps tendon and wild-type transthyretin cardiac amyloidosis. JAMA. 2017;318(10):962–3. https://doi.org/10.1001/jama.2017.9236.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Aus dem Siepen F, Hein S, Prestel S, Baumgartner C, Schonland S, Hegenbart U, et al. Carpal tunnel syndrome and spinal canal stenosis: harbingers of transthyretin amyloid cardiomyopathy? Clin Res Cardiol. 2019. https://doi.org/10.1007/s00392-019-01467-1.

    Article  CAS  Google Scholar 

  77. Palladini G, Sachchithanantham S, Milani P, Gillmore J, Foli A, Lachmann H, et al. A European collaborative study of cyclophosphamide, bortezomib, and dexamethasone in upfront treatment of systemic AL amyloidosis. Blood. 2015;126(5):612–5. https://doi.org/10.1182/blood-2015-01-620302.

    Article  PubMed  CAS  Google Scholar 

  78. Koivisto E, Kaikkonen L, Tokola H, Pikkarainen S, Aro J, Pennanen H, et al. Distinct regulation of B-type natriuretic peptide transcription by p38 MAPK isoforms. Mol Cell Endocrinol. 2011;338(1-2):18–27. https://doi.org/10.1016/j.mce.2011.02.015.

    Article  PubMed  CAS  Google Scholar 

  79. Perfetto F, Bergesio F, Grifoni E, Fabbri A, Ciuti G, Frusconi S, et al. Different NT-proBNP circulating levels for different types of cardiac amyloidosis. J Cardiovasc Med (Hagerstown). 2016;17(11):810–7. https://doi.org/10.2459/JCM.0000000000000349.

    Article  CAS  Google Scholar 

  80. Lousada I, Comenzo RL, Landau H, Guthrie S, Merlini G. Light chain amyloidosis: patient experience survey from the amyloidosis research consortium. Adv Ther. 2015;32(10):920–8. https://doi.org/10.1007/s12325-015-0250-0.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Bishop E, Brown EE, Fajardo J, Barouch LA, Judge DP, Halushka MK. Seven factors predict a delayed diagnosis of cardiac amyloidosis. Amyloid. 2018;25(3):174–9. https://doi.org/10.1080/13506129.2018.1498782.

    Article  PubMed  CAS  Google Scholar 

  82. Lane T, Fontana M, Martinez-Naharro A, Quarta CC, Whelan CJ, Petrie A, et al. Natural history, quality of life, and outcome in cardiac transthyretin amyloidosis. Circulation. 2019;140(1):16–26. https://doi.org/10.1161/CIRCULATIONAHA.118.038169.

    Article  PubMed  CAS  Google Scholar 

  83. Foli A, Palladini G, Caporali R, Verga L, Morbini P, Obici L, et al. The role of minor salivary gland biopsy in the diagnosis of systemic amyloidosis: results of a prospective study in 62 patients. Amyloid. 2011;18(Suppl 1):80–2. https://doi.org/10.3109/13506129.2011.574354029.

    Article  PubMed  Google Scholar 

  84. Gertz MA. Immunoglobulin light chain amyloidosis diagnosis and treatment algorithm 2018. Blood Cancer J. 2018;8(5):44. https://doi.org/10.1038/s41408-018-0080-9.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Arbustini E, Verga L, Concardi M, Palladini G, Obici L, Merlini G. Electron and immuno-electron microscopy of abdominal fat identifies and characterizes amyloid fibrils in suspected cardiac amyloidosis. Amyloid. 2002;9(2):108–14.

    Article  CAS  Google Scholar 

  86. Satoskar AA, Efebera Y, Hasan A, Brodsky S, Nadasdy G, Dogan A, et al. Strong transthyretin immunostaining: potential pitfall in cardiac amyloid typing. Am J Surg Pathol. 2011;35(11):1685–90. https://doi.org/10.1097/PAS.0b013e3182263d74.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Di Nunzio D, Recupero A, de Gregorio C, Zito C, Carerj S, Di Bella G. Echocardiographic findings in cardiac amyloidosis: inside two-dimensional, doppler, and strain imaging. Curr Cardiol Rep. 2019;21(2):7. https://doi.org/10.1007/s11886-019-1094-z.

    Article  PubMed  Google Scholar 

  88. Liu D, Hu K, Niemann M, Herrmann S, Cikes M, Stork S, et al. Effect of combined systolic and diastolic functional parameter assessment for differentiation of cardiac amyloidosis from other causes of concentric left ventricular hypertrophy. Circ Cardiovasc Imaging. 2013;6(6):1066–72. https://doi.org/10.1161/CIRCIMAGING.113.000683.

    Article  PubMed  Google Scholar 

  89. Phelan D, Collier P, Thavendiranathan P, Popovic ZB, Hanna M, Plana JC, et al. Relative apical sparing of longitudinal strain using two-dimensional speckle-tracking echocardiography is both sensitive and specific for the diagnosis of cardiac amyloidosis. Heart. 2012;98(19):1442–8. https://doi.org/10.1136/heartjnl-2012-302353.

    Article  PubMed  Google Scholar 

  90. Banypersad SM. The evolving role of cardiovascular magnetic resonance imaging in the evaluation of systemic amyloidosis. Magn Reson Insights. 2019;12:1178623X19843519. https://doi.org/10.1177/1178623X19843519.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Fontana M, Pica S, Reant P, Abdel-Gadir A, Treibel TA, Banypersad SM, et al. Prognostic value of late gadolinium enhancement cardiovascular magnetic resonance in cardiac amyloidosis. Circulation. 2015;132(16):1570–9. https://doi.org/10.1161/CIRCULATIONAHA.115.016567.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Fontana M, Banypersad SM, Treibel TA, Maestrini V, Sado DM, White SK, et al. Native T1 mapping in transthyretin amyloidosis. JACC Cardiovasc Imaging. 2014;7(2):157–65. https://doi.org/10.1016/j.jcmg.2013.10.008.

    Article  PubMed  Google Scholar 

  93. Vogelsberg H, Mahrholdt H, Deluigi CC, Yilmaz A, Kispert EM, Greulich S, et al. Cardiovascular magnetic resonance in clinically suspected cardiac amyloidosis: noninvasive imaging compared to endomyocardial biopsy. J Am Coll Cardiol. 2008;51(10):1022–30. https://doi.org/10.1016/j.jacc.2007.10.049.

    Article  PubMed  Google Scholar 

  94. Law WP, Wang W, Moore P, Mollee P, Ng A. Cardiac amyloid imaging with 18F-florbetaben positron emission tomography: a pilot study. Amyloid. 2017;24(sup1):162. https://doi.org/10.1080/13506129.2017.1281120.

    Article  PubMed  Google Scholar 

  95. Bravo PE, Dorbala S. Targeted nuclear imaging probes for cardiac amyloidosis. Curr Cardiol Rep. 2017;19(7):59. https://doi.org/10.1007/s11886-017-0868-4.

    Article  PubMed  Google Scholar 

  96. Dispenzieri A, Gertz MA, Kyle RA, Lacy MQ, Burritt MF, Therneau TM, et al. Serum cardiac troponins and N-terminal pro-brain natriuretic peptide: a staging system for primary systemic amyloidosis. J Clin Oncol. 2004;22(18):3751–7. https://doi.org/10.1200/JCO.2004.03.029.

    Article  PubMed  CAS  Google Scholar 

  97. Wechalekar AD, Schonland SO, Kastritis E, Gillmore JD, Dimopoulos MA, Lane T, et al. A European collaborative study of treatment outcomes in 346 patients with cardiac stage III AL amyloidosis. Blood. 2013;121(17):3420–7. https://doi.org/10.1182/blood-2012-12-473066.

    Article  PubMed  CAS  Google Scholar 

  98. Dispenzieri A, Gertz MA, Kumar SK, Lacy MQ, Kyle RA, Saenger AK, et al. High sensitivity cardiac troponin T in patients with immunoglobulin light chain amyloidosis. Heart. 2014;100(5):383–8. https://doi.org/10.1136/heartjnl-2013-304957.

    Article  PubMed  CAS  Google Scholar 

  99. Lilleness B, Ruberg FL, Mussinelli R, Doros G, Sanchorawala V. Development and validation of a survival staging system incorporating BNP in patients with light chain amyloidosis. Blood. 2019;133(3):215–23. https://doi.org/10.1182/blood-2018-06-858951.

    Article  PubMed  CAS  Google Scholar 

  100. Tomlinson R, Matigian N, Mollee P. Validation of the Boston University staging system in AL amyloidosis. Amyloid. 2019;26(3):125–7. https://doi.org/10.1080/13506129.2019.1608941.

    Article  PubMed  Google Scholar 

  101. Kumar S, Dispenzieri A, Lacy MQ, Hayman SR, Buadi FK, Colby C, et al. Revised prognostic staging system for light chain amyloidosis incorporating cardiac biomarkers and serum free light chain measurements. J Clin Oncol. 2012;30(9):989–95. https://doi.org/10.1200/JCO.2011.38.5724.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Kumar SK, Gertz MA, Dispenzieri A. Validation of Mayo Clinic staging system for light chain amyloidosis with high-sensitivity troponin. J Clin Oncol. 2019;37(2):171–3. https://doi.org/10.1200/JCO.18.01398.

    Article  PubMed  CAS  Google Scholar 

  103. Grogan M, Scott CG, Kyle RA, Zeldenrust SR, Gertz MA, Lin G, et al. Natural history of wild-type transthyretin cardiac amyloidosis and risk stratification using a novel staging system. J Am Coll Cardiol. 2016;68(10):1014–20. https://doi.org/10.1016/j.jacc.2016.06.033.

    Article  PubMed  Google Scholar 

  104. Gillmore JD, Damy T, Fontana M, Hutchinson M, Lachmann HJ, Martinez-Naharro A, et al. A new staging system for cardiac transthyretin amyloidosis. Eur Heart J. 2017. https://doi.org/10.1093/eurheartj/ehx589.

    Article  CAS  Google Scholar 

  105. Dittrich T, Benner A, Kimmich C, Siepen FAD, Veelken K, Kristen AV, et al. Performance analysis of AL amyloidosis cardiac biomarker staging systems with special focus on renal failure and atrial arrhythmia. Haematologica. 2019;104(7):1451–9. https://doi.org/10.3324/haematol.2018.205336.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Dispenzieri A, Dingli D, Kumar SK, Rajkumar SV, Lacy MQ, Hayman S, et al. Discordance between serum cardiac biomarker and immunoglobulin-free light-chain response in patients with immunoglobulin light-chain amyloidosis treated with immune modulatory drugs. Am J Hematol. 2010;85(10):757–9. https://doi.org/10.1002/ajh.21822.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Palladini G, Foli A, Milani P, Russo P, Albertini R, Lavatelli F, et al. Best use of cardiac biomarkers in patients with AL amyloidosis and renal failure. Am J Hematol. 2012;87(5):465–71. https://doi.org/10.1002/ajh.23141.

    Article  PubMed  CAS  Google Scholar 

  108. Kristen AV, Maurer MS, Rapezzi C, Mundayat R, Suhr OB, Damy T, et al. Impact of genotype and phenotype on cardiac biomarkers in patients with transthyretin amyloidosis - report from the Transthyretin Amyloidosis Outcome Survey (THAOS). PLoS One. 2017;12(4):e0173086. https://doi.org/10.1371/journal.pone.0173086.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Palladini G, Hegenbart U, Milani P, Kimmich C, Foli A, Ho AD, et al. A staging system for renal outcome and early markers of renal response to chemotherapy in AL amyloidosis. Blood. 2014;124(15):2325–32. https://doi.org/10.1182/blood-2014-04-570010.

    Article  PubMed  CAS  Google Scholar 

  110. Kastritis E, Gavriatopoulou M, Roussou M, Migkou M, Fotiou D, Ziogas DC, et al. Renal outcomes in patients with AL amyloidosis: prognostic factors, renal response and the impact of therapy. Am J Hematol. 2017;92(7):632–9. https://doi.org/10.1002/ajh.24738.

    Article  PubMed  CAS  Google Scholar 

  111. Merlini G, Dispenzieri A, Sanchorawala V, Schonland SO, Palladini G, Hawkins PN, et al. Systemic immunoglobulin light chain amyloidosis. Nat Rev Dis Primers. 2018;4(1):38. https://doi.org/10.1038/s41572-018-0034-3.

    Article  PubMed  Google Scholar 

  112. Bochtler T, Hegenbart U, Kunz C, Benner A, Kimmich C, Seckinger A, et al. Prognostic impact of cytogenetic aberrations in AL amyloidosis patients after high-dose melphalan: a long-term follow-up study. Blood. 2016;128(4):594–602. https://doi.org/10.1182/blood-2015-10-676361.

    Article  PubMed  CAS  Google Scholar 

  113. Bochtler T, Hegenbart U, Kunz C, Benner A, Seckinger A, Dietrich S, et al. Gain of chromosome 1q21 is an independent adverse prognostic factor in light chain amyloidosis patients treated with melphalan/dexamethasone. Amyloid. 2014;21(1):9–17. https://doi.org/10.3109/13506129.2013.854766.

    Article  PubMed  CAS  Google Scholar 

  114. Bochtler T, Hegenbart U, Kunz C, Granzow M, Benner A, Seckinger A, et al. Translocation t(11;14) is associated with adverse outcome in patients with newly diagnosed AL amyloidosis when treated with bortezomib-based regimens. J Clin Oncol. 2015;33(12):1371–8. https://doi.org/10.1200/JCO.2014.57.4947.

    Article  PubMed  CAS  Google Scholar 

  115. Palladini G, Milani P, Foli A, Vidus Rosin M, Basset M, Lavatelli F, et al. Melphalan and dexamethasone with or without bortezomib in newly diagnosed AL amyloidosis: a matched case-control study on 174 patients. Leukemia. 2014;28(12):2311–6. https://doi.org/10.1038/leu.2014.227.

    Article  PubMed  CAS  Google Scholar 

  116. Kristen AV, Kreusser MM, Blum P, Schonland SO, Frankenstein L, Dosch AO, et al. Improved outcomes after heart transplantation for cardiac amyloidosis in the modern era. J Heart Lung Transplant. 2018;37(5):611–8. https://doi.org/10.1016/j.healun.2017.11.015.

    Article  PubMed  Google Scholar 

  117. • Comenzo RL, Kastritis E, Maurer M, Zonder J, Minnema MC, Wechalekar A, et al. Subcutaneous daratumumab + cyclophosphamide, bortezomib, and dexamethsone (CYBORD) in patients with newly diagnosed amyloid light chain (AL) amyloidosis: updated safety run-in results of ANDROMEDA. EHA Library. 2019;267458:S875. Cardiac AL amyloidosis is associated with high mortality, especially in patients with advanced disease stage. Rapid reduction of toxic free light chains is crucial as hematologic response is a positive predictor of organ response and therefore translates into survival. Daratumumab in combination with CyBorD showed in the safety run-in phase excellent results. Additionally, results from relapsed AL amyloidosis patients have also shown promising results. Therefore, in case of positive results of ongoing phase III trial ANDROMEDA, daratumumab-containing regimes might become new standard of care and especially role of high-dose chemotherapy in young patients has to be reevaluated.

    Google Scholar 

  118. Comenzo RL, Reece D, Palladini G, Seldin D, Sanchorawala V, Landau H, et al. Consensus guidelines for the conduct and reporting of clinical trials in systemic light-chain amyloidosis. Leukemia. 2012;26(11):2317–25. https://doi.org/10.1038/leu.2012.100.

    Article  PubMed  CAS  Google Scholar 

  119. Muchtar E, Dispenzieri A, Leung N, Lacy MQ, Buadi FK, Dingli D, et al. Depth of organ response in AL amyloidosis is associated with improved survival: grading the organ response criteria. Leukemia. 2018. https://doi.org/10.1038/s41375-018-0060-x.

    Article  Google Scholar 

  120. Milani P, Basset M, Russo F, Foli A, Merlini G, Palladini G. Patients with light-chain amyloidosis and low free light-chain burden have distinct clinical features and outcome. Blood. 2017;130(5):625–31. https://doi.org/10.1182/blood-2017-02-767467.

    Article  PubMed  CAS  Google Scholar 

  121. Wong SW, Hegenbart U, Palladini G, Shah GL, Landau HJ, Warner M, et al. Outcome of patients with newly diagnosed systemic light-chain amyloidosis associated with deletion of 17p. Clin Lymphoma Myeloma Leuk. 2018;18(11):e493–e9. https://doi.org/10.1016/j.clml.2018.07.292.

    Article  PubMed  Google Scholar 

  122. Palladini G, Dispenzieri A, Gertz MA, Kumar S, Wechalekar A, Hawkins PN, et al. New criteria for response to treatment in immunoglobulin light chain amyloidosis based on free light chain measurement and cardiac biomarkers: impact on survival outcomes. J Clin Oncol. 2012;30(36):4541–9. https://doi.org/10.1200/JCO.2011.37.7614.

    Article  PubMed  CAS  Google Scholar 

  123. Milani P, Gertz MA, Merlini G, Dispenzieri A. Attitudes about when and how to treat patients with AL amyloidosis: an international survey. Amyloid. 2017;24(4):213–6. https://doi.org/10.1080/13506129.2017.1370421.

    Article  PubMed  CAS  Google Scholar 

  124. Kastritis E, Gavriatopoulou M, Roussou M, Bagratuni T, Migkou M, Fotiou D, et al. Efficacy of lenalidomide as salvage therapy for patients with AL amyloidosis. Amyloid. 2018;25(4):234–41. https://doi.org/10.1080/13506129.2018.1540410.

    Article  PubMed  CAS  Google Scholar 

  125. Sharpley FA, Manwani R, Mahmood S, Sachchithanantham S, Lachmann H, Gilmore J, et al. Real world outcomes of pomalidomide for treatment of relapsed light chain amyloidosis. Br J Haematol. 2018;183(4):557–63. https://doi.org/10.1111/bjh.15541.

    Article  PubMed  CAS  Google Scholar 

  126. Sanchorawala V, Palladini G, Kukreti V, Zonder JA, Cohen AD, Seldin DC, et al. A phase 1/2 study of the oral proteasome inhibitor ixazomib in relapsed or refractory AL amyloidosis. Blood. 2017;130(5):597–605. https://doi.org/10.1182/blood-2017-03-771220.

    Article  PubMed  CAS  Google Scholar 

  127. Ericzon BG, Wilczek HE, Larsson M, Wijayatunga P, Stangou A, Pena JR, et al. Liver Transplantation for hereditary transthyretin amyloidosis: after 20 years still the best therapeutic alternative? Transplantation. 2015;99(9):1847–54. https://doi.org/10.1097/TP.0000000000000574.

    Article  PubMed  CAS  Google Scholar 

  128. Carvalho A, Rocha A, Lobato L. Liver transplantation in transthyretin amyloidosis: issues and challenges. Liver Transpl. 2015;21(3):282–92. https://doi.org/10.1002/lt.24058.

    Article  PubMed  Google Scholar 

  129. Matsushima M, Yabe I, Tsuda M, Sakakibara M, Shimamura T, Sasaki H. Amyloid polyneuropathy and myocardial amyloidosis 10 years after domino liver transplantation from a patient with a transthyretin Ser50Arg mutation. Intern Med. 2017;56(23):3231–5. https://doi.org/10.2169/internalmedicine.8434-16.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Muchtar E, Grogan M, Dasari S, Kurtin PJ, Gertz MA. Acquired transthyretin amyloidosis after domino liver transplant: phenotypic correlation, implication of liver retransplantation. J Neurol Sci. 2017;379:192–7. https://doi.org/10.1016/j.jns.2017.06.013.

    Article  PubMed  CAS  Google Scholar 

  131. Llado L, Baliellas C, Casasnovas C, Ferrer I, Fabregat J, Ramos E, et al. Risk of transmission of systemic transthyretin amyloidosis after domino liver transplantation. Liver Transpl. 2010;16(12):1386–92. https://doi.org/10.1002/lt.22174.

    Article  PubMed  Google Scholar 

  132. Liepnieks JJ, Zhang LQ, Benson MD. Progression of transthyretin amyloid neuropathy after liver transplantation. Neurology. 2010;75(4):324–7. https://doi.org/10.1212/WNL.0b013e3181ea15d4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. •• Maurer MS, Schwartz JH, Gundapaneni B, Elliott PM, Merlini G, Waddington-Cruz M, et al. Tafamidis treatment for patients with transthyretin amyloid cardiomyopathy. N Engl J Med. 2018;379(11):1007–16. https://doi.org/10.1056/NEJMoa1805689. Wild-type ATTR amyloidosis has been an untreatable disease for decades, approved treatment options for hereditary ATTR amyloidosis were limited to patients with neurological manifestation. This trial was the first phase III trial in patients with cardiac ATTR amyloidosis showing efficacy of tafamidis and reduction of mortality in this underserved subpopulation giving hope that soon there will be approved treatment options for patients with transthyretin amyloid cardiomyopathy.

    Article  PubMed  CAS  Google Scholar 

  134. Castano A, Helmke S, Alvarez J, Delisle S, Maurer MS. Diflunisal for ATTR cardiac amyloidosis. Congest Heart Fail. 2012;18(6):315–9. https://doi.org/10.1111/j.1751-7133.2012.00303.x.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Judge DP, Falk RH, Maurer MS, Shah SJ, Witteles RM, Grogan M, et al. Transthyretin stabilization by AG10 in symptomatic transthyretin amyloid cardiomyopathy. J Am Coll Cardiol. 2019. https://doi.org/10.1016/j.jacc.2019.03.012.

    Article  CAS  Google Scholar 

  136. Fox JC, Hellawell JL, Rao S, O'Reilly T, Lumpkin R, Jernelius J, et al. First-in-human study of AG10, a novel, oral, specific, selective, and potent transthyretin stabilizer for the treatment of transthyretin amyloidosis: a phase 1 safety, tolerability, pharmacokinetic, and pharmacodynamic study in healthy adult volunteers. Clin Pharmacol Drug Dev. 2019. https://doi.org/10.1002/cpdd.700.

  137. Gamez J, Salvado M, Reig N, Sune P, Casasnovas C, Rojas-Garcia R, et al. Transthyretin stabilization activity of the catechol-O-methyltransferase inhibitor tolcapone (SOM0226) in hereditary ATTR amyloidosis patients and asymptomatic carriers: proof-of-concept study(). Amyloid. 2019;26(2):74–84. https://doi.org/10.1080/13506129.2019.1597702.

    Article  PubMed  CAS  Google Scholar 

  138. Berk JL, Suhr OB, Obici L, Sekijima Y, Zeldenrust SR, Yamashita T, et al. Repurposing diflunisal for familial amyloid polyneuropathy: a randomized clinical trial. JAMA. 2013;310(24):2658–67. https://doi.org/10.1001/jama.2013.283815.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Coelho T, Adams D, Silva A, Lozeron P, Hawkins PN, Mant T, et al. Safety and efficacy of RNAi therapy for transthyretin amyloidosis. N Engl J Med. 2013;369(9):819–29. https://doi.org/10.1056/NEJMoa1208760.

    Article  PubMed  CAS  Google Scholar 

  140. Benson MD, Dasgupta NR, Rissing SM, Smith J, Feigenbaum H. Safety and efficacy of a TTR specific antisense oligonucleotide in patients with transthyretin amyloid cardiomyopathy. Amyloid. 2017;24(4):219–25. https://doi.org/10.1080/13506129.2017.1374946.

    Article  PubMed  CAS  Google Scholar 

  141. Adams D, Gonzalez-Duarte A, O'Riordan WD, Yang CC, Ueda M, Kristen AV, et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N Engl J Med. 2018;379(1):11–21. https://doi.org/10.1056/NEJMoa1716153.

    Article  PubMed  CAS  Google Scholar 

  142. • Solomon SD, Adams D, Kristen A, Grogan M, Gonzalez-Duarte A, Maurer MS, et al. Effects of Patisiran, an RNA Interference therapeutic, on cardiac parameters in patients with hereditary transthyretin-mediated amyloidosis. Circulation. 2019;139(4):431–43. https://doi.org/10.1161/CIRCULATIONAHA.118.035831. Solomon et al. showed that patisiran as gene silencer is able to stabilize or even improve cardiac involvement. Compared to tafamidis, patisiran might have the potential to even reverse cardiac impairment due to transthyretin amyloid deposition, but phase III data are not available, yet.

    Article  PubMed  CAS  Google Scholar 

  143. Gertz MA, Comenzo R, Falk RH, Fermand JP, Hazenberg BP, Hawkins PN, et al. Definition of organ involvement and treatment response in immunoglobulin light chain amyloidosis (AL): a consensus opinion from the 10th International Symposium on Amyloid and Amyloidosis, Tours, France, 18-22 April 2004. Am J Hematol. 2005;79(4):319–28. https://doi.org/10.1002/ajh.20381.

    Article  PubMed  Google Scholar 

  144. Benson MD, Waddington-Cruz M, Berk JL, Polydefkis M, Dyck PJ, Wang AK, et al. Inotersen Treatment for Patients with Hereditary Transthyretin Amyloidosis. N Engl J Med. 2018;379(1):22–31. https://doi.org/10.1056/NEJMoa1716793.

    Article  PubMed  CAS  Google Scholar 

  145. Cardoso I, Martins D, Ribeiro T, Merlini G, Saraiva MJ. Synergy of combined doxycycline/TUDCA treatment in lowering Transthyretin deposition and associated biomarkers: studies in FAP mouse models. J Transl Med. 2010;8:74. https://doi.org/10.1186/1479-5876-8-74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Wixner J, Pilebro B, Lundgren HE, Olsson M, Anan I. Effect of doxycycline and ursodeoxycholic acid on transthyretin amyloidosis. Amyloid. 2017;24(sup1):78–9. https://doi.org/10.1080/13506129.2016.1269739.

    Article  PubMed  CAS  Google Scholar 

  147. Karlstedt E, Jimenez-Zepeda V, Howlett JG, White JA, Fine NM. Clinical experience with the use of doxycycline and ursodeoxycholic acid for the treatment of transthyretin cardiac amyloidosis. J Card Fail. 2019;25(3):147–53. https://doi.org/10.1016/j.cardfail.2019.01.006.

    Article  PubMed  Google Scholar 

  148. Okuda Y. AA amyloidosis - Benefits and prospects of IL-6 inhibitors. Mod Rheumatol. 2019;29(2):268–74. https://doi.org/10.1080/14397595.2018.1515145.

    Article  PubMed  CAS  Google Scholar 

  149. Lane T, Wechalekar AD, Gillmore JD, Hawkins PN, Lachmann HJ. Safety and efficacy of empirical interleukin-1 inhibition using anakinra in AA amyloidosis of uncertain aetiology. Amyloid. 2017;24(3):189–93. https://doi.org/10.1080/13506129.2017.1352503.

    Article  PubMed  CAS  Google Scholar 

  150. Grogan M, Dispenzieri A. Natural history and therapy of AL cardiac amyloidosis. Heart Fail Rev. 2015;20(2):155–62. https://doi.org/10.1007/s10741-014-9464-5.

    Article  PubMed  CAS  Google Scholar 

  151. Pollak A, Falk RH. Left ventricular systolic dysfunction precipitated by verapamil in cardiac amyloidosis. Chest. 1993;104(2):618–20. https://doi.org/10.1378/chest.104.2.618.

    Article  PubMed  CAS  Google Scholar 

  152. Muchtar E, Gertz MA, Kumar SK, Lin G, Boilson B, Clavell A, et al. Digoxin use in systemic light-chain (AL) amyloidosis: contra-indicated or cautious use? Amyloid. 2018;25(2):86–92. https://doi.org/10.1080/13506129.2018.1449744.

    Article  PubMed  CAS  Google Scholar 

  153. Cassidy JT. Cardiac amyloidosis. Two cases with digitalis sensitivity. Ann Intern Med. 1961;55:989–94. https://doi.org/10.7326/0003-4819-55-6-989.

    Article  PubMed  CAS  Google Scholar 

  154. Pomerance A. Senile cardiac amyloidosis. Br Heart J. 1965;27(5):711–8. https://doi.org/10.1136/hrt.27.5.711.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Rubinow A, Skinner M, Cohen AS. Digoxin sensitivity in amyloid cardiomyopathy. Circulation. 1981;63(6):1285–8. https://doi.org/10.1161/01.cir.63.6.1285.

    Article  PubMed  CAS  Google Scholar 

  156. Abraham WT, Adamson PB, Bourge RC, Aaron MF, Costanzo MR, Stevenson LW, et al. Wireless pulmonary artery haemodynamic monitoring in chronic heart failure: a randomised controlled trial. Lancet. 2011;377(9766):658–66. https://doi.org/10.1016/S0140-6736(11)60101-3.

    Article  PubMed  Google Scholar 

  157. Abraham WT, Stevenson LW, Bourge RC, Lindenfeld JA, Bauman JG, Adamson PB, et al. Sustained efficacy of pulmonary artery pressure to guide adjustment of chronic heart failure therapy: complete follow-up results from the CHAMPION randomised trial. Lancet. 2016;387(10017):453–61. https://doi.org/10.1016/S0140-6736(15)00723-0.

    Article  PubMed  Google Scholar 

  158. Feng D, Syed IS, Martinez M, Oh JK, Jaffe AS, Grogan M, et al. Intracardiac thrombosis and anticoagulation therapy in cardiac amyloidosis. Circulation. 2009;119(18):2490–7. https://doi.org/10.1161/CIRCULATIONAHA.108.785014.

    Article  PubMed  CAS  Google Scholar 

  159. Lin G, Dispenzieri A, Kyle R, Grogan M, Brady PA. Implantable cardioverter defibrillators in patients with cardiac amyloidosis. J Cardiovasc Electrophysiol. 2013;24(7):793–8. https://doi.org/10.1111/jce.12123.

    Article  PubMed  Google Scholar 

  160. Kristen AV, Dengler TJ, Hegenbart U, Schonland SO, Goldschmidt H, Sack FU, et al. Prophylactic implantation of cardioverter-defibrillator in patients with severe cardiac amyloidosis and high risk for sudden cardiac death. Heart Rhythm. 2008;5(2):235–40. https://doi.org/10.1016/j.hrthm.2007.10.016.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Palladini.

Ethics declarations

Conflict of Interest

Dr. Ihne reports personal fees from Takeda, personal fees from Akcea, other from Janssen, personal fees from ONLUS, grants from IZKF Würzburg, grants from Comprehensive Heart Failure Center (CHFC), personal fees from Pfizer, and personal fees from Alnylam, outside the submitted work

Dr. Morbach reports personal fees from EBR Systems, grants from Bavarian Ministry of Economic Affairs, Regional Development and Energy, Germany, personal fees from Tomtec Imaging Systems, grants from Orion Pharma, personal fees from Alnylam, personal fees from Akcea, and personal fees from Amgen, outside the submitted work.

Dr. Obici reports personal fees from Pfizer, personal fees from Alnylam, and personal fees from Akcea, outside the submitted work

Dr. Störk reports grants from German Ministry for Education and Reserach, grants from European Union, grants from Boehringer Ingelheim, personal fees from Boehringer Ingelheim, personal fees from Bayer, grants from Novartis, other from Novartis, personal fees from Novartis, other from Boehringer Ingelheim, other from Bayer, grants from Bavarian Ministry for Education and Research, and personal fees from Pfizer, outside the submitted work

Dr. Palladini reports personal fees from Janssen-Cilag, personal fees from Takeda, personal fees from Celgene, and personal fees from Prothena, outside the submitted work

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors. All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Comorbidities of Heart Failure

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ihne, S., Morbach, C., Obici, L. et al. Amyloidosis in Heart Failure. Curr Heart Fail Rep 16, 285–303 (2019). https://doi.org/10.1007/s11897-019-00446-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-019-00446-x

Keywords

Navigation