Skip to main content
Log in

Cardiac amyloidosis—interdisciplinary approach to diagnosis and therapy

Kardiale Amyloidose – interdisziplinärer Ansatz bei Diagnose und Therapie

  • Main topic
  • Published:
Herz Aims and scope Submit manuscript

Abstract

The vast majority of cardiac amyloidosis (CA) cases are caused by light chain (AL) or transthyretin (ATTR) amyloidosis. The latter is divided into hereditary (ATTRv) and wild-type forms (ATTRwt). The incidence of ATTRwt amyloidosis has significantly increased, particularly due to the improved diagnosis of cardiac manifestations, with relevant proportions in patient populations with heart failure (HF) and preserved ejection fraction (HFpEF). Cardiac amyloidosis should be suspected in HF with indicative clinical scenarios/“red flags” with typical signs of CA in echocardiography. Further noninvasive imaging (cardiovascular magnetic resonance imaging, scintigraphy) and specific laboratory diagnostics are important for the diagnosis and typing of CA into the underlying main forms of ATTR and AL amyloidosis. The histopathologic analysis of an endomyocardial biopsy is necessary if noninvasive diagnostic methods do not enable reliable typing of CA. This is crucial for initiating specific therapy. Therapy of HF in CA is largely limited to the use of diuretics in the absence of evidence on the benefit of classic HF therapy with neurohormonal modulators. Innovative therapies have been developed for amyloidosis with improvement in organ protection, prognosis, and quality of life. These include specific cytoreductive therapies for monoclonal light-chain disease in AL amyloidosis and pharmacologic stabilization or inhibition of transthyretin expression in ATTR amyloidosis. Since the CA underlying amyloidosis is a systemic disease also affecting other organ systems, close interdisciplinary cooperation is crucial for rapid and effective diagnosis and therapy.

Zusammenfassung

Die große Mehrheit der kardialen Amyloidosen (CA) wird durch eine Leichtketten(AL)- oder Transthyretin(ATTR)-Amyloidose verursacht. Letztere wird in hereditäre (ATTRv) und Wildtypformen (ATTRwt) unterteilt. Die Inzidenz der ATTRwt-Amyloidose hat v. a. aufgrund verbesserter Diagnostik der kardialen Manifestation deutlich zugenommen – mit relevanten Anteilen bei Patientenkollektiven mit Herzinsuffizienz (HI) und erhaltener Pumpfunktion. Eine CA muss bei HI und wegweisenden klinischen Szenarien/„red flags“ mit typischen Zeichen einer CA in der Echokardiographie vermutet werden. Für die Diagnose und Typisierung der CA in die Hauptformen ATTR- und AL-Amyloidose ist eine weiterführende nichtinvasive Bildgebung (kardiovaskulare Magnetresonanztomographie, Szintigraphie) und spezifische Labordiagnostik wichtig. Die histopathologische Analyse einer endomyokardialen Biopsie ist notwendig, wenn die nichtinvasive Diagnostik keine sichere Typisierung der CA ermöglicht. Dies ist entscheidend für die Einleitung einer spezifischen Therapie. Die Therapie der HI bei CA beschränkt sich bei fehlender Evidenz für den Nutzen der klassischen HI-Therapie mit neurohormonellen Modulatoren weitgehend auf den Einsatz von Diuretika. Für die Amyloidose wurden innovative Therapien entwickelt mit Verbesserung der Organprotektion, Prognose und Lebensqualität. Dazu gehören spezielle zytoreduktive Therapien der monoklonalen Leichtkettenerkrankung bei AL-Amyloidose und die pharmakologische Stabilisierung oder Hemmung der Expression von Transthyretin bei ATTR-Amyloidose. Da die zur CA führende Amyloidose als Systemerkrankung auch andere Organsysteme betrifft, ist für eine zügige und effektive Diagnostik und Therapie eine enge interdisziplinäre Zusammenarbeit entscheidend.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Wechalekar AD, Gillmore JD, Hawkins PN (2016) Systemic amyloidosis. Lancet 387(10038):2641–2654

    Article  CAS  PubMed  Google Scholar 

  2. Cuddy SAM, Falk RH (2020) Amyloidosis as a systemic disease in context. Can J Cardiol 36(3):396–407

    Article  PubMed  Google Scholar 

  3. Muchtar E, Dispenzieri A, Magen H et al (2021) Systemic amyloidosis from A (AA) to T (ATTR): a review. J Intern Med 289(3):268–292

    Article  CAS  PubMed  Google Scholar 

  4. Maurer MS, Elliott P, Comenzo R et al (2017) Addressing common questions encountered in the diagnosis and management of cardiac amyloidosis. Circulation 135(14):1357–1377

    Article  PubMed  PubMed Central  Google Scholar 

  5. Donnelly JP, Hanna M (2017) Cardiac amyloidosis: an update on diagnosis and treatment. Cleve Clin J Med 84(12):12–26

    Article  PubMed  Google Scholar 

  6. Yilmaz A, Bauersachs J, Bengel F et al (2021) Diagnosis and treatment of cardiac amyloidosis: position statement of the German cardiac society (DGK). Clin Res Cardiol 110(4):479–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Garcia-Pavia P, Rapezzi C, Adler Y et al (2021) Diagnosis and treatment of cardiac amyloidosis: a position statement of the ESC working group on myocardial and pericardial diseases. Eur Heart J 42(16):1554–1568

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hawkins PN, Ando Y, Dispenzeri A et al (2015) Evolving landscape in the management of transthyretin amyloidosis. Ann Med 47(8):625–638

    Article  CAS  PubMed  Google Scholar 

  9. Skrahina V, Grittner U, Beetz C et al (2021) Hereditary transthyretin-related amyloidosis is frequent in polyneuropathy and cardiomyopathy of no obvious aetiology. Ann Med 53(1):1787–1796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Manganelli F, Fabrizi GM, Luigetti M et al (2020) Hereditary transthyretin amyloidosis overview. Neurol Sci. https://doi.org/10.1007/s10072-020-04889-2

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ravichandran S, Lachmann HJ, Wechalekar AD (2020) Epidemiologic and survival trends in amyloidosis, 1987–2019. N Engl J Med 382(16):1567–1568

    Article  PubMed  Google Scholar 

  12. Hegenbart U, Fuhr N, Huber L et al (2021) Two-year evaluation of the German clinical amyloidosis registry. Blood 138:3780

    Article  Google Scholar 

  13. Castano A, Narotsky DL, Hamid N et al (2017) Unveiling transthyretin cardiac amyloidosis and its predictors among elderly patients with severe aortic stenosis undergoing transcatheter aortic valve replacement. Eur Heart J 38(38):2879–2887

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gonzalez-Lopez E, Gallego-Delgado M, Guzzo-Merello G et al (2015) Wild-type transthyretin amyloidosis as a cause of heart failure with preserved ejection fraction. Eur Heart J 36(38):2585–2594

    Article  CAS  PubMed  Google Scholar 

  15. Quock TP, Yan T, Chang E et al (2018) Epidemiology of AL amyloidosis: a real-world study using US claims data. Blood Adv 2(10):1046–1053

    Article  PubMed  PubMed Central  Google Scholar 

  16. Witteles RM, Bokhari S, Damy T et al (2019) Screening for transthyretin amyloid cardiomyopathy in everyday practice. JACC Heart Fail 7(8):709–716

    Article  PubMed  Google Scholar 

  17. Kumar S, Dispenzieri A, Lacy MQ et al (2012) Revised prognostic staging system for light chain amyloidosis incorporating cardiac biomarkers and serum free light chain measurements. J Clin Oncol 30(9):989–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gillmore JD, Damy T, Fontana M et al (2018) A new staging system for cardiac transthyretin amyloidosis. Eur Heart J 39(30):2799–2806

    Article  CAS  PubMed  Google Scholar 

  19. Katzmann JA, Kyle RA, Benson J et al (2009) Screening panels for detection of monoclonal gammopathies. Clin Chem 55(8):1517–1522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Katzmann JA, Clark RJ, Abraham RS et al (2002) Serum reference intervals and diagnostic ranges for free kappa and free lambda immunoglobulin light chains: relative sensitivity for detection of monoclonal light chains. Clin Chem 48(9):1437–1444

    Article  CAS  PubMed  Google Scholar 

  21. Phelan D, Collier P, Thavendiranathan P et al (2012) Relative apical sparing of longitudinal strain using two-dimensional speckle-tracking echocardiography is both sensitive and specific for the diagnosis of cardiac amyloidosis. Heart 98(19):1442–1448

    Article  PubMed  Google Scholar 

  22. Boldrini M, Cappelli F, Chacko L et al (2020) Multiparametric echocardiography scores for the diagnosis of cardiac amyloidosis. JACC Cardiovasc Imaging 13(4):909–920

    Article  PubMed  Google Scholar 

  23. Vogelsberg H, Mahrholdt H, Deluigi CC et al (2008) Cardiovascular magnetic resonance in clinically suspected cardiac amyloidosis: noninvasive imaging compared to endomyocardial biopsy. J Am Coll Cardiol 51(10):1022–1030

    Article  PubMed  Google Scholar 

  24. Karamitsos TD, Piechnik SK, Banypersad SM et al (2013) Noncontrast T1 mapping for the diagnosis of cardiac amyloidosis. JACC Cardiovasc Imaging 6(4):488–497

    Article  PubMed  Google Scholar 

  25. Pan JA, Kerwin MJ, Salerno M (2020) Native T1 mapping, extracellular volume mapping, and late gadolinium enhancement in cardiac amyloidosis: a meta-analysis. JACC Cardiovasc Imaging 13(6):1299–1310

    Article  PubMed  PubMed Central  Google Scholar 

  26. Syed IS, Glockner JF, Feng D et al (2010) Role of cardiac magnetic resonance imaging in the detection of cardiac amyloidosis. JACC Cardiovasc Imaging 3(2):155–164

    Article  PubMed  Google Scholar 

  27. Dorbala S, Ando Y, Bokhari S et al (2019) ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI expert consensus recommendations for multimodality imaging in cardiac amyloidosis: part 1 of 2‑evidence base and standardized methods of imaging. J Nucl Cardiol 26(6):2065–2123

    Article  PubMed  Google Scholar 

  28. Perugini E, Guidalotti PL, Salvi F et al (2005) Noninvasive etiologic diagnosis of cardiac amyloidosis using 99mTc‑3,3‑diphosphono‑1,2‑propanodicarboxylic acid scintigraphy. J Am Coll Cardiol 46(6):1076–1084

    Article  PubMed  Google Scholar 

  29. Gillmore JD, Maurer MS, Falk RH et al (2016) Nonbiopsy diagnosis of cardiac transthyretin amyloidosis. Circulation 133(24):2404–2412

    Article  CAS  PubMed  Google Scholar 

  30. Maurer MS, Ruberg FL (2021) Cardiac scintigraphy and screening for transthyretin cardiac amyloidosis: caveat emptor. Circulation 144(13):1005–1007

    Article  PubMed  Google Scholar 

  31. Ardehali H, Qasim A, Cappola T et al (2004) Endomyocardial biopsy plays a role in diagnosing patients with unexplained cardiomyopathy. Am Heart J 147(5):919–923

    Article  PubMed  Google Scholar 

  32. Garcia Y, Collins AB, Stone JR (2018) Abdominal fat pad excisional biopsy for the diagnosis and typing of systemic amyloidosis. Hum Pathol 72:71–79

    Article  PubMed  Google Scholar 

  33. Griffin JM, Rosenthal JL, Grodin JL et al (2021) ATTR amyloidosis: current and emerging management strategies: JACC: cardiooncology state-of-the-art review. JACC CardioOncol 3(4):488–505

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bianchi G, Zhang Y, Comenzo RL (2021) AL amyloidosis: current chemotherapy and immune therapy treatment strategies: JACC: cardiooncology state-of-the-art review. JACC CardioOncol 3(4):467–487

    Article  PubMed  PubMed Central  Google Scholar 

  35. Gertz MA, Falk RH, Skinner M et al (1985) Worsening of congestive heart failure in amyloid heart disease treated by calcium channel-blocking agents. Am J Cardiol 55(13):1645

    Article  CAS  PubMed  Google Scholar 

  36. Donnelly JP, Sperry BW, Gabrovsek A et al (2020) Digoxin use in cardiac amyloidosis. Am J Cardiol 133:134–138

    Article  CAS  PubMed  Google Scholar 

  37. Maurer MS, Schwartz JH, Gundapaneni B et al (2018) Tafamidis treatment for patients with transthyretin amyloid cardiomyopathy. N Engl J Med 379(11):1007–1016

    Article  CAS  PubMed  Google Scholar 

  38. Coelho T, Maia LF, Martins da Silva A et al (2012) Tafamidis for transthyretin familial amyloid polyneuropathy: a randomized, controlled trial. Neurology 79(8):785–792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Coelho T, Maia LF, Martins da Silva A et al (2013) Long-term effects of tafamidis for the treatment of transthyretin familial amyloid polyneuropathy. J Neurol 260(11):2802–2814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Judge DP, Heitner SB, Falk RH et al (2019) Transthyretin stabilization by AG10 in symptomatic transthyretin amyloid cardiomyopathy. J Am Coll Cardiol 74(3):285–295

    Article  CAS  PubMed  Google Scholar 

  41. Benson MD, Waddington-Cruz M, Berk JL et al (2018) Inotersen treatment for patients with hereditary transthyretin amyloidosis. N Engl J Med 379(1):22–31

    Article  CAS  PubMed  Google Scholar 

  42. Dasgupta NR, Rissing SM, Smith J et al (2020) Inotersen therapy of transthyretin amyloid cardiomyopathy. Amyloid 27(1):52–58

    Article  CAS  PubMed  Google Scholar 

  43. Adams D, Gonzalez-Duarte A, O’Riordan WD et al (2018) Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N Engl J Med 379(1):11–21

    Article  CAS  PubMed  Google Scholar 

  44. Solomon SD, Adams D, Kristen A et al (2019) Effects of patisiran, an RNA interference therapeutic, on cardiac parameters in patients with hereditary transthyretin-mediated amyloidosis. Circulation 139(4):431–443

    Article  CAS  PubMed  Google Scholar 

  45. Fontana M, Martinez-Naharro A, Chacko L et al (2021) Reduction in CMR derived extracellular volume with patisiran indicates cardiac amyloid regression. JACC Cardiovasc Imaging 14(1):189–199

    Article  PubMed  Google Scholar 

  46. Kastritis E, Palladini G, Minnema MC et al (2021) Daratumumab-based treatment for immunoglobulin light-chain amyloidosis. N Engl J Med 385(1):46–58

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Bavendiek MD.

Ethics declarations

Conflict of interest

A. Hänselmann received honoraria and/or travel support from Novartis, Bayer, Boehringer Ingelheim, Abiomed, Alnylam, Pfizer.

D. Berliner received honoraria and/or travel support from Abbott, Bayer, Biotronik, Boehringer Ingelheim, Daiichi Sankyo, Novartis, Orion Pharma, and Pfizer, and research support from CVRx, Novartis, and Zoll.

J. Bauersachs received honoraria for lectures/consulting from Novartis, Vifor, Bayer, Pfizer, Boehringer Ingelheim, AstraZeneca, Cardior, CVRx, BMS, Amgen, Corvia, not related to this article; and research support for the department from Zoll, CVRx, Abiomed, not related to this article.

U. Bavendiek received honoraria and/or travel support from Astra Zeneca, Alnylam, Amgen, Bayer, Pfizer, and research support from Alnylam.

For this article no studies with human participants or animals were performed by any of the authors. All studies mentioned were in accordance with the ethical standards indicated in each case.

Additional information

figure qr

Scan QR code & read article online

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hänselmann, A., Berliner, D., Bauersachs, J. et al. Cardiac amyloidosis—interdisciplinary approach to diagnosis and therapy. Herz 47, 324–331 (2022). https://doi.org/10.1007/s00059-022-05122-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-022-05122-w

Keywords

Schlüsselwörter

Navigation