Skip to main content

Advertisement

Log in

Mechanisms of Type 2 Diabetes Risk Loci

  • Genetics (AP Morris, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Deciphering the mechanisms of type 2 diabetes (T2DM) risk loci can greatly inform on disease pathology. This review discusses current knowledge of mechanisms through which genetic variants influence T2DM risk and considerations for future studies.

Recent Findings

Over 100 T2DM risk loci to date have been identified. Candidate causal variants at risk loci map predominantly to non-coding sequence. Physiological, epigenomic and gene expression data suggest that variants at many known T2DM risk loci affect pancreatic islet regulation, although variants at other loci also affect protein function and regulatory processes in adipose, pre-adipose, liver, skeletal muscle and brain. The effects of T2DM variants on regulatory activity in these tissues appear largely, but not exclusively, due to altered transcription factor binding. Putative target genes of T2DM variants have been defined at an increasing number of loci and some, such as FTO, may entail several genes and multiple tissues. Gene networks in islets and adipocytes have been implicated in T2DM risk, although the molecular pathways of risk genes remain largely undefined.

Summary

Efforts to fully define the mechanisms of T2DM risk loci are just beginning. Continued identification of risk mechanisms will benefit from combining genetic fine-mapping with detailed phenotypic association data, high-throughput epigenomics data from diabetes-relevant tissue, functional screening of candidate genes and genome editing of cellular and animal models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Worth Health Organiziation. www.who.int/mediacentre/factsheets/fs312/en/. Accessed July 2017.

  2. •• Fuchsberger C, Flannick J, Teslovich TM, Mahajan A, Agarwala V, Gaulton KJ, et al. The genetic architecture of type 2 diabetes. Nature. 2016;536(7614):41–7. doi:10.1038/nature18642. This study demonstrates that the genetic basis of type 2 diabetes is largely a consequence of many small effect variants.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Morris AP, Voight BF, Teslovich TM, Ferreira T, Segre AV, Steinthorsdottir V, et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet. 2012;44(9):981–90. doi:10.1038/ng.2383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Genomes Project C, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, et al. A global reference for human genetic variation. Nature. 2015;526(7571):68–74. doi:10.1038/nature15393.

    Article  Google Scholar 

  5. Voight BF, Scott LJ, Steinthorsdottir V, Morris AP, Dina C, Welch RP, et al. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet. 2010;42(7):579–89. doi:10.1038/ng.609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wellcome Trust Case Control C, Maller JB, McVean G, Byrnes J, Vukcevic D, Palin K, et al. Bayesian refinement of association signals for 14 loci in 3 common diseases. Nat Genet. 2012;44(12):1294–301. doi:10.1038/ng.2435.

    Article  Google Scholar 

  7. Gaulton KJ, Ferreira T, Lee Y, Raimondo A, Magi R, Reschen ME, et al. Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci. Nat Genet. 2015;47(12):1415–25. doi:10.1038/ng.3437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Replication DIG, Meta-analysis C, Asian Genetic Epidemiology Network Type 2 Diabetes C, South Asian Type 2 Diabetes C, Mexican American Type 2 Diabetes C, Type 2 Diabetes Genetic Exploration by Nex-generation sequencing in muylti-Ethnic Samples C, et al. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat Genet. 2014;46(3):234–44. doi:10.1038/ng.2897.

    Article  Google Scholar 

  9. Steinthorsdottir V, Thorleifsson G, Sulem P, Helgason H, Grarup N, Sigurdsson A, et al. Identification of low-frequency and rare sequence variants associated with elevated or reduced risk of type 2 diabetes. Nat Genet. 2014;46(3):294–8. doi:10.1038/ng.2882.

    Article  CAS  PubMed  Google Scholar 

  10. Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015;12(3):e1001779. doi:10.1371/journal.pmed.1001779.

    Article  PubMed  PubMed Central  Google Scholar 

  11. McCarthy S, Das S, Kretzschmar W, Delaneau O, Wood AR, Teumer A, et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat Genet. 2016;48(10):1279–83. doi:10.1038/ng.3643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science. 2007;316(5826):889–94. doi:10.1126/science.1141634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Scott RA, Lagou V, Welch RP, Wheeler E, Montasser ME, Luan J, et al. Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways. Nat Genet. 2012;44(9):991–1005. doi:10.1038/ng.2385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Manning AK, Hivert MF, Scott RA, Grimsby JL, Bouatia-Naji N, Chen H, et al. A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance. Nat Genet. 2012;44(6):659–69. doi:10.1038/ng.2274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Soranzo N, Sanna S, Wheeler E, Gieger C, Radke D, Dupuis J, et al. Common variants at 10 genomic loci influence hemoglobin A(1)(C) levels via glycemic and nonglycemic pathways. Diabetes. 2010;59(12):3229–39. doi:10.2337/db10-0502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Saxena R, Hivert MF, Langenberg C, Tanaka T, Pankow JS, Vollenweider P, et al. Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge. Nat Genet. 2010;42(2):142–8. doi:10.1038/ng.521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dupuis J, Langenberg C, Prokopenko I, Saxena R, Soranzo N, Jackson AU, et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet. 2010;42(2):105–16. doi:10.1038/ng.520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Strawbridge RJ, Dupuis J, Prokopenko I, Barker A, Ahlqvist E, Rybin D, et al. Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes. Diabetes. 2011;60(10):2624–34. doi:10.2337/db11-0415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Prokopenko I, Poon W, Magi R, Prasad BR, Salehi SA, Almgren P, et al. A central role for GRB10 in regulation of islet function in man. PLoS Genet. 2014;10(4):e1004235. doi:10.1371/journal.pgen.1004235.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM, Koseki M, et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature. 2010;466(7307):707–13. doi:10.1038/nature09270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shungin D, Winkler TW, Croteau-Chonka DC, Ferreira T, Locke AE, Magi R, et al. New genetic loci link adipose and insulin biology to body fat distribution. Nature. 2015;518(7538):187–96. doi:10.1038/nature14132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015;518(7538):197–206. doi:10.1038/nature14177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Horikoshi M, Beaumont RN, Day FR, Warrington NM, Kooijman MN, Fernandez-Tajes J, et al. Genome-wide associations for birth weight and correlations with adult disease. Nature. 2016;538(7624):248–52. doi:10.1038/nature19806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pasquali L, Gaulton KJ, Rodriguez-Segui SA, Mularoni L, Miguel-Escalada I, Akerman I, et al. Pancreatic islet enhancer clusters enriched in type 2 diabetes risk-associated variants. Nat Genet. 2014;46(2):136–43. doi:10.1038/ng.2870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dimas AS, Lagou V, Barker A, Knowles JW, Magi R, Hivert MF, et al. Impact of type 2 diabetes susceptibility variants on quantitative glycemic traits reveals mechanistic heterogeneity. Diabetes. 2014;63(6):2158–71. doi:10.2337/db13-0949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Onengut-Gumuscu S, Chen WM, Burren O, Cooper NJ, Quinlan AR, Mychaleckyj JC, et al. Fine mapping of type 1 diabetes susceptibility loci and evidence for colocalization of causal variants with lymphoid gene enhancers. Nat Genet. 2015;47(4):381–6. doi:10.1038/ng.3245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lees CW, Barrett JC, Parkes M, Satsangi J. New IBD genetics: common pathways with other diseases. Gut. 2011;60(12):1739–53. doi:10.1136/gut.2009.199679.

    Article  CAS  PubMed  Google Scholar 

  28. Frayling TM, Colhoun H, Florez JC. A genetic link between type 2 diabetes and prostate cancer. Diabetologia. 2008;51(10):1757–60. doi:10.1007/s00125-008-1114-9.

    Article  CAS  PubMed  Google Scholar 

  29. Cook JP, Morris AP. Multi-ethnic genome-wide association study identifies novel locus for type 2 diabetes susceptibility. Eur J Human Genet: EJHG. 2016;24(8):1175–80. doi:10.1038/ejhg.2016.17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hebbring SJ. The challenges, advantages and future of phenome-wide association studies. Immunology. 2014;141(2):157–65. doi:10.1111/imm.12195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Stancakova A, Paananen J, Soininen P, Kangas AJ, Bonnycastle LL, Morken MA, et al. Effects of 34 risk loci for type 2 diabetes or hyperglycemia on lipoprotein subclasses and their composition in 6,580 nondiabetic Finnish men. Diabetes. 2011;60(5):1608–16. doi:10.2337/db10-1655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Roadmap Epigenomics C, Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, et al. Integrative analysis of 111 reference human epigenomes. Nature. 2015;518(7539):317–30. doi:10.1038/nature14248.

    Article  Google Scholar 

  33. Consortium GT. Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science. 2015;348(6235):648–60. doi:10.1126/science.1262110.

    Article  Google Scholar 

  34. Furey TS. ChIP-seq and beyond: new and improved methodologies to detect and characterize protein-DNA interactions. Nat Rev Genet. 2012;13(12):840–52. doi:10.1038/nrg3306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods. 2013;10(12):1213–8. doi:10.1038/nmeth.2688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gaulton KJ, Nammo T, Pasquali L, Simon JM, Giresi PG, Fogarty MP, et al. A map of open chromatin in human pancreatic islets. Nat Genet. 2010;42(3):255–9. doi:10.1038/ng.530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Consortium EP. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489(7414):57–74. doi:10.1038/nature11247.

    Article  Google Scholar 

  38. Mikkelsen TS, Xu Z, Zhang X, Wang L, Gimble JM, Lander ES, et al. Comparative epigenomic analysis of murine and human adipogenesis. Cell. 2010;143(1):156–69. doi:10.1016/j.cell.2010.09.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Parker SC, Stitzel ML, Taylor DL, Orozco JM, Erdos MR, Akiyama JA, et al. Chromatin stretch enhancer states drive cell-specific gene regulation and harbor human disease risk variants. Proc Natl Acad Sci U S A. 2013;110(44):17921–6. doi:10.1073/pnas.1317023110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Scott LJ, Erdos MR, Huyghe JR, Welch RP, Beck AT, Wolford BN, et al. The genetic regulatory signature of type 2 diabetes in human skeletal muscle. Nat Commun. 2016;7:11764. doi:10.1038/ncomms11764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fogarty MP, Panhuis TM, Vadlamudi S, Buchkovich ML, Mohlke KL. Allele-specific transcriptional activity at type 2 diabetes-associated single nucleotide polymorphisms in regions of pancreatic islet open chromatin at the JAZF1 locus. Diabetes. 2013;62(5):1756–62. doi:10.2337/db12-0972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fogarty MP, Cannon ME, Vadlamudi S, Gaulton KJ, Mohlke KL. Identification of a regulatory variant that binds FOXA1 and FOXA2 at the CDC123/CAMK1D type 2 diabetes GWAS locus. PLoS Genet. 2014;10(9):e1004633. doi:10.1371/journal.pgen.1004633.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Stitzel ML, Sethupathy P, Pearson DS, Chines PS, Song L, Erdos MR, et al. Global epigenomic analysis of primary human pancreatic islets provides insights into type 2 diabetes susceptibility loci. Cell Metab. 2010;12(5):443–55. doi:10.1016/j.cmet.2010.09.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Varshney A, Scott LJ, Welch RP, Erdos MR, Chines PS, Narisu N, et al. Genetic regulatory signatures underlying islet gene expression and type 2 diabetes. Proc Natl Acad Sci U S A. 2017;114(9):2301–6. doi:10.1073/pnas.1621192114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Horikoshi M, Pasquali L, Wiltshire S, Huyghe JR, Mahajan A, Asimit JL, et al. Transancestral fine-mapping of four type 2 diabetes susceptibility loci highlights potential causal regulatory mechanisms. Hum Mol Genet. 2016;25(10):2070–81. doi:10.1093/hmg/ddw048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. • Carrat GR, Hu M, Nguyen-Tu MS, Chabosseau P, Gaulton KJ, van de Bunt M, et al. Decreased STARD10 expression is associated with defective insulin secretion in humans and mice. Am J Hum Genet. 2017;100(2):238–56. doi:10.1016/j.ajhg.2017.01.011. This study comprehensively details a mechanism for a diabetes risk locus combining genetic fine-mapping, epigenome and expression QTL mapping, and animal models.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kulzer JR, Stitzel ML, Morken MA, Huyghe JR, Fuchsberger C, Kuusisto J, et al. A common functional regulatory variant at a type 2 diabetes locus upregulates ARAP1 expression in the pancreatic beta cell. Am J Hum Genet. 2014;94(2):186–97. doi:10.1016/j.ajhg.2013.12.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Claussnitzer M, Dankel SN, Klocke B, Grallert H, Glunk V, Berulava T, et al. Leveraging cross-species transcription factor binding site patterns: from diabetes risk loci to disease mechanisms. Cell. 2014;156(1–2):343–58. doi:10.1016/j.cell.2013.10.058.

    Article  CAS  PubMed  Google Scholar 

  49. •• Claussnitzer M, Hui CC, Kellis M. FTO obesity variant and adipocyte browning in humans. N Engl J Med. 2016;374(2):192–3. doi:10.1056/NEJMc1513316. This study comprehensively details a mechanism for a diabetes risk locus using contemporary epigenomic and genome editing techniques.

    PubMed  Google Scholar 

  50. Smemo S, Tena JJ, Kim KH, Gamazon ER, Sakabe NJ, Gomez-Marin C, et al. Obesity-associated variants within FTO form long-range functional connections with IRX3. Nature. 2014;507(7492):371–5. doi:10.1038/nature13138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Stratigopoulos G, LeDuc CA, Cremona ML, Chung WK, Leibel RL. Cut-like homeobox 1 (CUX1) regulates expression of the fat mass and obesity-associated and retinitis pigmentosa GTPase regulator-interacting protein-1-like (RPGRIP1L) genes and coordinates leptin receptor signaling. J Biol Chem. 2011;286(3):2155–70. doi:10.1074/jbc.M110.188482.

    Article  CAS  PubMed  Google Scholar 

  52. Trynka G, Sandor C, Han B, Xu H, Stranger BE, Liu XS, et al. Chromatin marks identify critical cell types for fine mapping complex trait variants. Nat Genet. 2013;45(2):124–30. doi:10.1038/ng.2504.

    Article  CAS  PubMed  Google Scholar 

  53. Pickrell JK. Joint analysis of functional genomic data and genome-wide association studies of 18 human traits. Am J Hum Genet. 2014;94(4):559–73. doi:10.1016/j.ajhg.2014.03.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kichaev G, Yang WY, Lindstrom S, Hormozdiari F, Eskin E, Price AL, et al. Integrating functional data to prioritize causal variants in statistical fine-mapping studies. PLoS Genet. 2014;10(10):e1004722. doi:10.1371/journal.pgen.1004722.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Kichaev G, Pasaniuc B. Leveraging functional-annotation data in trans-ethnic fine-mapping studies. Am J Hum Genet. 2015;97(2):260–71. doi:10.1016/j.ajhg.2015.06.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mathelier A, Shi W, Wasserman WW. Identification of altered cis-regulatory elements in human disease. Trends Genet: TIG. 2015;31(2):67–76. doi:10.1016/j.tig.2014.12.003.

    Article  CAS  PubMed  Google Scholar 

  57. Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, et al. Systematic localization of common disease-associated variation in regulatory DNA. Science. 2012;337(6099):1190–5. doi:10.1126/science.1222794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gaffney DJ, McVicker G, Pai AA, Fondufe-Mittendorf YN, Lewellen N, Michelini K, et al. Controls of nucleosome positioning in the human genome. PLoS Genet. 2012;8(11):e1003036. doi:10.1371/journal.pgen.1003036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Elliott HR, Shihab HA, Lockett GA, Holloway JW, McRae AF, Smith GD, et al. The role of DNA methylation in type 2 diabetes aetiology—using genotype as a causal anchor. Diabetes. 2017; doi:10.2337/db16-0874.

  60. van de Bunt M, Gaulton KJ, Parts L, Moran I, Johnson PR, Lindgren CM, et al. The miRNA profile of human pancreatic islets and beta-cells and relationship to type 2 diabetes pathogenesis. PLoS One. 2013;8(1):e55272. doi:10.1371/journal.pone.0055272.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Li YI, van de Geijn B, Raj A, Knowles DA, Petti AA, Golan D, et al. RNA splicing is a primary link between genetic variation and disease. Science. 2016;352(6285):600–4. doi:10.1126/science.aad9417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang A, Yue F, Li Y, Xie R, Harper T, Patel NA, et al. Epigenetic priming of enhancers predicts developmental competence of hESC-derived endodermal lineage intermediates. Cell Stem Cell. 2015;16(4):386–99. doi:10.1016/j.stem.2015.02.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ackermann AM, Wang Z, Schug J, Naji A, Kaestner KH. Integration of ATAC-seq and RNA-seq identifies human alpha cell and beta cell signature genes. Mol Metab. 2016;5(3):233–44. doi:10.1016/j.molmet.2016.01.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. McVicker G, van de Geijn B, Degner JF, Cain CE, Banovich NE, Raj A, et al. Identification of genetic variants that affect histone modifications in human cells. Science. 2013;342(6159):747–9. doi:10.1126/science.1242429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kilpinen H, Waszak SM, Gschwind AR, Raghav SK, Witwicki RM, Orioli A, et al. Coordinated effects of sequence variation on DNA binding, chromatin structure, and transcription. Science. 2013;342(6159):744–7. doi:10.1126/science.1242463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jolma A, Yan J, Whitington T, Toivonen J, Nitta KR, Rastas P, et al. DNA-binding specificities of human transcription factors. Cell. 2013;152(1–2):327–39. doi:10.1016/j.cell.2012.12.009.

    Article  CAS  PubMed  Google Scholar 

  67. Riley TR, Slattery M, Abe N, Rastogi C, Liu D, Mann RS, et al. SELEX-seq: a method for characterizing the complete repertoire of binding site preferences for transcription factor complexes. Methods Mol Biol. 2014;1196:255–78. doi:10.1007/978-1-4939-1242-1_16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Arnold CD, Gerlach D, Stelzer C, Boryn LM, Rath M, Stark A. Genome-wide quantitative enhancer activity maps identified by STARR-seq. Science. 2013;339(6123):1074–7. doi:10.1126/science.1232542.

    Article  CAS  PubMed  Google Scholar 

  69. Lyssenko V, Lupi R, Marchetti P, Del Guerra S, Orho-Melander M, Almgren P, et al. Mechanisms by which common variants in the TCF7L2 gene increase risk of type 2 diabetes. J Clin Invest. 2007;117(8):2155–63. doi:10.1172/JCI30706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lappalainen T, Sammeth M, Friedlander MR, ‘t Hoen PA, Monlong J, Rivas MA, et al. Transcriptome and genome sequencing uncovers functional variation in humans. Nature. 2013;501(7468):506–11. doi:10.1038/nature12531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Fadista J, Vikman P, Laakso EO, Mollet IG, Esguerra JL, Taneera J, et al. Global genomic and transcriptomic analysis of human pancreatic islets reveals novel genes influencing glucose metabolism. Proc Natl Acad Sci U S A. 2014;111(38):13924–9. doi:10.1073/pnas.1402665111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Small KS, Hedman AK, Grundberg E, Nica AC, Thorleifsson G, Kong A, et al. Identification of an imprinted master trans regulator at the KLF14 locus related to multiple metabolic phenotypes. Nat Genet. 2011;43(6):561–4. doi:10.1038/ng.833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. van de Bunt M, Manning Fox JE, Dai X, Barrett A, Grey C, Li L, et al. Transcript expression data from human islets links regulatory signals from genome-wide association studies for type 2 diabetes and glycemic traits to their downstream effectors. PLoS Genet. 2015;11(12):e1005694. doi:10.1371/journal.pgen.1005694.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Giambartolomei C, Vukcevic D, Schadt EE, Franke L, Hingorani AD, Wallace C, et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 2014;10(5):e1004383. doi:10.1371/journal.pgen.1004383.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Locke JM, Hysenaj G, Wood AR, Weedon MN, Harries LW. Targeted allelic expression profiling in human islets identifies cis-regulatory effects for multiple variants identified by type 2 diabetes genome-wide association studies. Diabetes. 2015;64(4):1484–91. doi:10.2337/db14-0957.

    Article  CAS  PubMed  Google Scholar 

  76. Gusev A, Ko A, Shi H, Bhatia G, Chung W, Penninx BW, et al. Integrative approaches for large-scale transcriptome-wide association studies. Nat Genet. 2016;48(3):245–52. doi:10.1038/ng.3506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lawlor N, George J, Bolisetty M, Kursawe R, Sun L, Sivakamasundari V, et al. Single-cell transcriptomes identify human islet cell signatures and reveal cell-type-specific expression changes in type 2 diabetes. Genome Res. 2017;27(2):208–22. doi:10.1101/gr.212720.116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hughes JR, Roberts N, McGowan S, Hay D, Giannoulatou E, Lynch M, et al. Analysis of hundreds of cis-regulatory landscapes at high resolution in a single, high-throughput experiment. Nat Genet. 2014;46(2):205–12. doi:10.1038/ng.2871.

    Article  CAS  PubMed  Google Scholar 

  79. Jin F, Li Y, Dixon JR, Selvaraj S, Ye Z, Lee AY, et al. A high-resolution map of the three-dimensional chromatin interactome in human cells. Nature. 2013;503(7475):290–4. doi:10.1038/nature12644.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature. 2012;485(7398):376–80. doi:10.1038/nature11082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Grubert F, Zaugg JB, Kasowski M, Ursu O, Spacek DV, Martin AR, et al. Genetic control of chromatin states in humans involves local and distal chromosomal interactions. Cell. 2015;162(5):1051–65. doi:10.1016/j.cell.2015.07.048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Selvaraj S, R Dixon J, Bansal V, Ren B. Whole-genome haplotype reconstruction using proximity-ligation and shotgun sequencing. Nat Biotechnol. 2013;31(12):1111–8. doi:10.1038/nbt.2728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bonnefond A, Clement N, Fawcett K, Yengo L, Vaillant E, Guillaume JL, et al. Rare MTNR1B variants impairing melatonin receptor 1B function contribute to type 2 diabetes. Nat Genet. 2012;44(3):297–301. doi:10.1038/ng.1053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Flannick J, Thorleifsson G, Beer NL, Jacobs SB, Grarup N, Burtt NP, et al. Loss-of-function mutations in SLC30A8 protect against type 2 diabetes. Nat Genet. 2014;46(4):357–63. doi:10.1038/ng.2915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Majithia AR, Flannick J, Shahinian P, Guo M, Bray MA, Fontanillas P, et al. Rare variants in PPARG with decreased activity in adipocyte differentiation are associated with increased risk of type 2 diabetes. Proc Natl Acad Sci U S A. 2014;111(36):13127–32. doi:10.1073/pnas.1410428111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Pal A, Potjer TP, Thomsen SK, Ng HJ, Barrett A, Scharfmann R, et al. Loss-of-function mutations in the cell-cycle control gene CDKN2A impact on glucose homeostasis in humans. Diabetes. 2016;65(2):527–33. doi:10.2337/db15-0602.

    Article  CAS  PubMed  Google Scholar 

  87. Xia Q, Chesi A, Manduchi E, Johnston BT, Lu S, Leonard ME, et al. The type 2 diabetes presumed causal variant within TCF7L2 resides in an element that controls the expression of ACSL5. Diabetologia. 2016;59(11):2360–8. doi:10.1007/s00125-016-4077-2.

    Article  CAS  PubMed  Google Scholar 

  88. Rees MG, Wincovitch S, Schultz J, Waterstradt R, Beer NL, Baltrusch S, et al. Cellular characterisation of the GCKR P446L variant associated with type 2 diabetes risk. Diabetologia. 2012;55(1):114–22. doi:10.1007/s00125-011-2348-5.

    Article  CAS  PubMed  Google Scholar 

  89. Thomsen SK, Ceroni A, van de Bunt M, Burrows C, Barrett A, Scharfmann R, et al. Systematic functional characterization of candidate causal genes for type 2 diabetes risk variants. Diabetes. 2016;65(12):3805–11. doi:10.2337/db16-0361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. da Silva XG, Mondragon A, Sun G, Chen L, McGinty JA, French PM, et al. Abnormal glucose tolerance and insulin secretion in pancreas-specific Tcf7l2-null mice. Diabetologia. 2012;55(10):2667–76. doi:10.1007/s00125-012-2600-7.

    Article  Google Scholar 

  91. Nicolson TJ, Bellomo EA, Wijesekara N, Loder MK, Baldwin JM, Gyulkhandanyan AV, et al. Insulin storage and glucose homeostasis in mice null for the granule zinc transporter ZnT8 and studies of the type 2 diabetes-associated variants. Diabetes. 2009;58(9):2070–83. doi:10.2337/db09-0551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Pound LD, Sarkar SA, Benninger RK, Wang Y, Suwanichkul A, Shadoan MK, et al. Deletion of the mouse Slc30a8 gene encoding zinc transporter-8 results in impaired insulin secretion. Biochem J. 2009;421(3):371–6. doi:10.1042/BJ20090530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wijesekara N, Dai FF, Hardy AB, Giglou PR, Bhattacharjee A, Koshkin V, et al. Beta cell-specific Znt8 deletion in mice causes marked defects in insulin processing, crystallisation and secretion. Diabetologia. 2010;53(8):1656–68. doi:10.1007/s00125-010-1733-9.

    Article  CAS  PubMed  Google Scholar 

  94. Butler AA, Cone RD. Knockout studies defining different roles for melanocortin receptors in energy homeostasis. Ann N Y Acad Sci. 2003;994:240–5.

    Article  CAS  PubMed  Google Scholar 

  95. Yamada T, Ishihara H, Tamura A, Takahashi R, Yamaguchi S, Takei D, et al. WFS1-deficiency increases endoplasmic reticulum stress, impairs cell cycle progression and triggers the apoptotic pathway specifically in pancreatic beta-cells. Hum Mol Genet. 2006;15(10):1600–9. doi:10.1093/hmg/ddl081.

    Article  CAS  PubMed  Google Scholar 

  96. Tamemoto H, Kadowaki T, Tobe K, Yagi T, Sakura H, Hayakawa T, et al. Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1. Nature. 1994;372(6502):182–6. doi:10.1038/372182a0.

    Article  CAS  PubMed  Google Scholar 

  97. Church C, Lee S, Bagg EA, McTaggart JS, Deacon R, Gerken T, et al. A mouse model for the metabolic effects of the human fat mass and obesity associated FTO gene. PLoS Genet. 2009;5(8):e1000599. doi:10.1371/journal.pgen.1000599.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Stratigopoulos G, Martin Carli JF, O'Day DR, Wang L, Leduc CA, Lanzano P, et al. Hypomorphism for RPGRIP1L, a ciliary gene vicinal to the FTO locus, causes increased adiposity in mice. Cell Metab. 2014;19(5):767–79. doi:10.1016/j.cmet.2014.04.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. da Silva XG, Bellomo EA, McGinty JA, French PM, Rutter GA. Animal models of GWAS-identified type 2 diabetes genes. J Diabetes Res. 2013;2013:906590. doi:10.1155/2013/906590.

    Google Scholar 

  100. Savic D, Ye H, Aneas I, Park SY, Bell GI, Nobrega MA. Alterations in TCF7L2 expression define its role as a key regulator of glucose metabolism. Genome Res. 2011;21(9):1417–25. doi:10.1101/gr.123745.111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Dooley K, Zon LI. Zebrafish: a model system for the study of human disease. Curr Opin Genet Dev. 2000;10(3):252–6.

    Article  CAS  PubMed  Google Scholar 

  102. Alfa RW, Kim SK. Using Drosophila to discover mechanisms underlying type 2 diabetes. Dis Model Mech. 2016;9(4):365–76. doi:10.1242/dmm.023887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Grotz AK, Thomsen SK. Prioritizing causal genes at type 2 diabetes risk loci. Curr Diabetes Rep. 2017;in press.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyle J. Gaulton.

Ethics declarations

Conflict of Interest

Kyle Gaulton declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by the author.

Additional information

This article is part of the Topical Collection on Genetics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaulton, K.J. Mechanisms of Type 2 Diabetes Risk Loci. Curr Diab Rep 17, 72 (2017). https://doi.org/10.1007/s11892-017-0908-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-017-0908-x

Keywords

Navigation