Skip to main content
Log in

Genes Affecting β-Cell Function in Type 1 Diabetes

  • Pathogenesis of Type 1 Diabetes (A Pugliese, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Type 1 diabetes (T1D) is a multifactorial disease resulting from an immune-mediated destruction of the insulin-producing pancreatic β cells. Several environmental and genetic risk factors predispose to the disease. Genome-wide association studies (GWAS) have identified around 50 genetic regions that affect the risk of developing T1D, but the disease-causing variants and genes are still largely unknown. In this review, we discuss the current status of T1D susceptibility loci and candidate genes with focus on the β cell. At least 40 % of the genes in the T1D susceptibility loci are expressed in human islets and β cells, where they according to recent studies modulate the β-cell response to the immune system. As most of the risk variants map to noncoding regions of the genome, i.e., promoters, enhancers, intergenic regions, and noncoding genes, their possible involvement in T1D pathogenesis as gene regulators will also be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Willcox A, Richardson SJ, Bone AJ, et al. Analysis of islet inflammation in human type 1 diabetes. Clin Exp Immunol. 2009;155:173–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Coppieters KT, Dotta F, Amirian N, et al. Demonstration of islet-autoreactive CD8 T cells in insulitic lesions from recent onset and long-term type 1 diabetes patients. J Exp Med. 2012;209:51–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Nerup J, Mandrup-Poulsen T, Helqvist S, et al. On the pathogenesis of IDDM. Diabetologia. 1994;37 Suppl 2:S82–9.

    Article  PubMed  Google Scholar 

  4. Eizirik DL, Colli ML, Ortis F. The role of inflammation in insulitis and beta-cell loss in type 1 diabetes. Nat Rev Endocrinol. 2009;5:219–26.

    Article  CAS  PubMed  Google Scholar 

  5. Keenan HA, Sun JK, Levine J, et al. Residual insulin production and pancreatic ss-cell turnover after 50 years of diabetes: Joslin Medalist Study. Diabetes. 2010;59:2846–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Liu EH, Digon III BJ, Hirshberg B, et al. Pancreatic beta cell function persists in many patients with chronic type 1 diabetes, but is not dramatically improved by prolonged immunosuppression and euglycaemia from a beta cell allograft. Diabetologia. 2009;52:1369–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Gianani R, Campbell-Thompson M, Sarkar SA, et al. Dimorphic histopathology of long-standing childhood-onset diabetes. Diabetologia. 2010;53:690–8.

    Article  CAS  PubMed  Google Scholar 

  8. Krogvold L, Skog O, Sundström G, et al.: Function of isolated pancreatic islets from patients at onset of type 1 diabetes; Insulin secretion can be restored after some days in a non-diabetogenic environment in vitro. Results from the DiViD study. Diabetes. 2015. This study shows that restoration of specific function of the isolated islets removed from patients at onset of type 1 diabetes can be obtained after in vitro culture.

  9. van Belle TL, Coppieters KT, von Herrath MG. Type 1 diabetes: etiology, immunology, and therapeutic strategies. Physiol Rev. 2011;91:79–118.

    Article  PubMed  Google Scholar 

  10. Saisho Y, Butler AE, Manesso E, et al. β-cell mass and turnover in humans: effects of obesity and aging. Diabetes Care. 2013;36:111–7. This autopsy study of a non-diabetic population suggests that the beta-cell mass may vary a log-fold between individuals.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Cooper JD, Smyth DJ, Smiles AM, et al. Meta-analysis of genome-wide association study data identifies additional type 1 diabetes risk loci. Nat Genet. 2008;40:1399–401.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Barrett JC, Clayton DG, Concannon P, et al. Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet. 2009;41:703–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Bradfield JP, Qu HQ, Wang K, et al. A genome-wide meta-analysis of six type 1 diabetes cohorts identifies multiple associated loci. PLoS Genet. 2011;7, e1002293.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Onengut-Gumuscu S, Chen WM, Burren O, et al. Fine mapping of type 1 diabetes susceptibility loci and evidence for colocalization of causal variants with lymphoid gene enhancers. Nat Genet. 2015;47:381–6. The ImmunoChip study of type 1 diabetes susceptibility loci confirms results from previous genome-wide association studies and identifies novel loci and risk variants.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Groop L, Pociot F. Genetics of diabetes--are we missing the genes or the disease? Mol Cell Endocrinol. 2014;382:726–39.

    Article  CAS  PubMed  Google Scholar 

  16. Wray NR, Yang J, Goddard ME, et al. The genetic interpretation of area under the ROC curve in genomic profiling. PLoS Genet. 2010;6, e1000864.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Clayton DG. Prediction and interaction in complex disease genetics: experience in type 1 diabetes. PLoS Genet. 2009;5, e1000540.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Manolio TA. Bringing genome-wide association findings into clinical use. Nat Rev Genet. 2013;14:549–58.

    Article  CAS  PubMed  Google Scholar 

  19. Pociot F, Akolkar B, Concannon P, et al. Genetics of type 1 diabetes: what’s next? Diabetes. 2010;59:1561–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Brorsson CA, Onengut S, Chen W-M, et al.: Novel association between immune-mediated susceptibility loci and persistent autoantibody positivity in type 1 diabetes. Diabetes. 2015. The most comprehensive study to demonstrate the genetic association to autoimmunity antibody positivity in type 1 diabetes.

  21. Brorsson CA, Pociot F, T1DGC. Shared genetic basis for type 1 diabetes, islet autoantibodies and autoantibodies associated with other immune-mediated diseases in type 1 diabetes families. Diabetes Care. 2015;In Press.

  22. Bergholdt R, Brorsson C, Palleja A, et al. Identification of novel type 1 diabetes candidate genes by integrating genome-wide association data, protein-protein interactions, and human pancreatic islet gene expression. Diabetes. 2012;61:954–62. This study provides evidence that many of the genes in the type 1 diabetes susceptibility loci interact in functional networks and that the majority of these genes are expressed in human islets. Furthermore, this study highlights the advantage of integrating several types of data to understand complex diseases including type 1 diabetes.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Eizirik DL, Sammeth M, Bouckenooghe T, et al. The human pancreatic islet transcriptome: expression of candidate genes for type 1 diabetes and the impact of pro-inflammatory cytokines. PLoS Genet. 2012;8, e1002552. This study provides the most comprehensive transcriptome analysis of human islets under control conditions and following exposure to pro-inflammatory cytokines. It demonstrates that many of the candidate genes for type 1 diabetes are expressed in human islets.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Storling J, Brorsson CA. Candidate genes expressed in human islets and their role in the pathogenesis of type 1 diabetes. Curr Diab Rep. 2013;13:633–41.

    Article  CAS  PubMed  Google Scholar 

  25. Colli ML, Moore F, Gurzov EN, et al. MDA5 and PTPN2, two candidate genes for type 1 diabetes, modify pancreatic beta-cell responses to the viral by-product double-stranded RNA. Hum Mol Genet. 2010;19:135–46.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Lincez PJ, Shanina I, Horwitz MS. Reduced expression of the MDA5 gene IFIH1 prevents autoimmune diabetes. Diabetes. 2015;64:2184–93. This work identifies MDA5 as an important target for preventative and therapeutic strategies to halt T1D. By reducing MDA5 gene expression in NOD mice a unique IFN-I signature that led to expansion of regulatory T cells at the site of autoimmunity and protection from T1D was identified.

    Article  CAS  PubMed  Google Scholar 

  27. Moore F, Colli ML, Cnop M, et al. PTPN2, a candidate gene for type 1 diabetes, modulates interferon-gamma-induced pancreatic beta-cell apoptosis. Diabetes. 2009;58:1283–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Nogueira TC, Paula FM, Villate O, et al. GLIS3, a susceptibility gene for type 1 and type 2 diabetes, modulates pancreatic beta cell apoptosis via regulation of a splice variant of the BH3-only protein Bim. PLoS Genet. 2013;9, e1003532. This study demonstrates that the type 1 and type 2 diabetes candidate gene GLIS3 has important functions in beta cells and besides its role in insulin transcription also regulates beta cell apoptosis by modulating alternative splicing of the pro-apoptotic protein Bim.

  29. Santin I, Moore F, Colli ML, et al. PTPN2, a candidate gene for type 1 diabetes, modulates pancreatic beta-cell apoptosis via regulation of the BH3-only protein Bim. Diabetes. 2011;60:3279–88.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Floyel T, Brorsson C, Nielsen LB, et al. CTSH regulates beta-cell function and disease progression in newly diagnosed type 1 diabetes patients. Proc Natl Acad Sci U S A. 2014;111:10305–10. This study demonstrates that the type 1 diabetes candidate gene CTSH has important functions in beta cells, and that type 1 diabetes risk SNPs affect CTSH expression and beta cell function in type 1 diabetes patients.

  31. Marroqui L, Santin I, Dos Santos RS, et al. BACH2, a candidate risk gene for type 1 diabetes, regulates apoptosis in pancreatic beta-cells via JNK1 modulation and crosstalk with the candidate gene PTPN2. Diabetes. 2014;63:2516–27.

    Article  PubMed  Google Scholar 

  32. Soleimanpour SA, Gupta A, Bakay M, et al. The diabetes susceptibility gene Clec16a regulates mitophagy. Cell. 2014;157:1577–90. The study describes an important role of the type 1 diabetes candidate gene CLEC16A in beta cell function and indicates that dysregulated autophagy/mitophagy could be implicated in beta cell dysfunction and development of type 1 diabetes.

  33. Izumi K, Mine K, Inoue Y, et al.: Reduced Tyk2 gene expression in beta-cells due to natural mutation determines susceptibility to virus-induced diabetes. Nat Commun. 2015;6

  34. Ziegler AG, Hillebrand B, Rabl W, et al. On the appearance of islet associated autoimmunity in offspring of diabetic mothers: a prospective study from birth. Diabetologia. 1993;36:402–8.

    Article  CAS  PubMed  Google Scholar 

  35. Achenbach P, Koczwara K, Knopff A, et al. Mature high-affinity immune responses to (pro)insulin anticipate the autoimmune cascade that leads to type 1 diabetes. J Clin Invest. 2004;114:589–97.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Bennett ST, Lucassen AM, Gough SC, et al. Susceptibility to human type 1 diabetes at IDDM2 is determined by tandem repeat variation at the insulin gene minisatellite locus. Nat Genet. 1995;9:284–92.

    Article  CAS  PubMed  Google Scholar 

  37. Liu M, Sun J, Cui J, et al. INS-gene mutations: from genetics and beta cell biology to clinical disease. Mol Asp Med. 2015;42:3–18.

    Article  CAS  Google Scholar 

  38. Nejentsev S, Walker N, Riches D, et al. Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes. Science. 2009;324:387–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Downes K, Pekalski M, Angus KL, et al. Reduced expression of IFIH1 is protective for type 1 diabetes. PLoS One. 2010;5, e12646.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Skog O, Korsgren O, Frisk G. Modulation of innate immunity in human pancreatic islets infected with enterovirus in vitro. J Med Virol. 2011;83:658–64.

    Article  CAS  PubMed  Google Scholar 

  41. Santin I, Eizirik DL. Candidate genes for type 1 diabetes modulate pancreatic islet inflammation and beta-cell apoptosis. Diabetes Obes Metab. 2013;15 Suppl 3:71–81.

    Article  CAS  PubMed  Google Scholar 

  42. Cho YS, Chen C-H, Hu C, et al. Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians. Nat Genet. 2012;44:67–72.

    Article  CAS  Google Scholar 

  43. Senee V, Chelala C, Duchatelet S, et al. Mutations in GLIS3 are responsible for a rare syndrome with neonatal diabetes mellitus and congenital hypothyroidism. Nat Genet. 2006;38:682–7.

    Article  CAS  PubMed  Google Scholar 

  44. Kang HS, Kim Y-S, ZeRuth G, et al. Transcription factor Glis3, a novel critical player in the regulation of pancreatic β-cell development and insulin gene expression. Mol Cell Biol. 2009;29:6366–79.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Yang YS, Chang BHJ, Chan L. Sustained expression of the transcription factor GLIS3 is required for normal beta cell function in adults. Embo Mol Med. 2013;5:92–104.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Yang Y, Chang BH-J, Samson SL, et al. The Krüppel-like zinc finger protein Glis3 directly and indirectly activates insulin gene transcription. Nucleic Acids Res. 2009;37:2529–38.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Dupuis J, Langenberg C, Prokopenko I, et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet. 2010;42:105–16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Barker A, Sharp SJ, Timpson NJ, et al. Association of genetic loci with glucose levels in childhood and adolescence: a meta-analysis of over 6,000 children. Diabetes. 2011;60:1805–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Wallace C, Smyth DJ, Maisuria-Armer M, et al. The imprinted DLK1-MEG3 gene region on chromosome 14q32.2 alters susceptibility to type 1 diabetes. Nat Genet. 2010;42:68–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Marroqui L, Santos RSD, Floyel T, et al.: TYK2, a candidate risk gene for type 1 diabetes, modulates apoptosis and the innate immune response in human pancreatic β-cells. Diabetes. 2015.

  51. Zhong H, Yang X, Kaplan LM, et al. Integrating pathway analysis and genetics of gene expression for genome-wide association studies. Am J Hum Genet. 2010;86:581–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Cho DY, Kim YA, Przytycka TM. Chapter 5: network biology approach to complex diseases. PLoS Comput Biol. 2012;8, e1002820.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Gustafsson M, Nestor C, Zhang H, et al. Modules, networks and systems medicine for understanding disease and aiding diagnosis. Genome Med. 2014;6:82.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Mitra K, Carvunis AR, Ramesh SK, et al. Integrative approaches for finding modular structure in biological networks. Nat Rev Genet. 2013;14:719–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Berchtold LA, Storling ZM, Ortis F, et al. Huntingtin-interacting protein 14 is a type 1 diabetes candidate protein regulating insulin secretion and beta-cell apoptosis. Proc Natl Acad Sci U S A. 2011;108:E681–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Lopes M, Kutlu B, Miani M, et al. Temporal profiling of cytokine-induced genes in pancreatic beta-cells by meta-analysis and network inference. Genomics. 2014;103:264–75.

    Article  CAS  PubMed  Google Scholar 

  57. Bergholdt R, Storling ZM, Lage K, et al. Integrative analysis for finding genes and networks involved in diabetes and other complex diseases. Genome Biol. 2007;8:R253.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Evangelou M, Smyth DJ, Fortune MD, et al. A method for gene-based pathway analysis using genomewide association study summary statistics reveals nine new type 1 diabetes associations. Genet Epidemiol. 2014;38:661–70.

    Article  PubMed Central  PubMed  Google Scholar 

  59. Hindorff LA, Sethupathy P, Junkins HA, et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U S A. 2009;106:9362–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Eliasson L, Esguerra JL. Role of non-coding RNAs in pancreatic beta-cell development and physiology. Acta Physiol (Oxf). 2014;211:273–84.

    Article  CAS  Google Scholar 

  61. Plaisance V, Waeber G, Regazzi R, et al. Role of microRNAs in islet beta-cell compensation and failure during diabetes. J Diabetes Res. 2014;2014:618652.

    PubMed Central  PubMed  Google Scholar 

  62. Guay C, Jacovetti C, Nesca V, et al. Emerging roles of non-coding RNAs in pancreatic beta-cell function and dysfunction. Diabetes Obes Metab. 2012;14 Suppl 3:12–21.

    Article  CAS  PubMed  Google Scholar 

  63. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136:215–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Kalis M, Bolmeson C, Esguerra JLS, et al. Beta-cell specific deletion of Dicer1 leads to defective insulin secretion and diabetes mellitus. PLoS One. 2011;6, e29166.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Melkman-Zehavi T, Oren R, Kredo-Russo S, et al. miRNAs control insulin content in pancreatic beta-cells via downregulation of transcriptional repressors. EMBO J. 2011;30:835–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Özcan S. Minireview: microRNA function in pancreatic β cells. Mol Endocrinol. 2014;28:1922–33.

    Article  PubMed  Google Scholar 

  67. Ameres SL, Zamore PD. Diversifying microRNA sequence and function. Nat Rev Mol Cell Biol. 2013;14:475–88.

    Article  CAS  PubMed  Google Scholar 

  68. de Jong VM, Zaldumbide A, van der Slik AR, et al. Post-transcriptional control of candidate risk genes for type 1 diabetes by rare genetic variants. Genes Immun. 2013;14:58–61.

    Article  PubMed  Google Scholar 

  69. Gong W, Xiao D, Ming G, et al. Type 2 diabetes mellitus-related genetic polymorphisms in microRNAs and microRNA target sites. J Diabetes. 2014;6:279–89.

    Article  CAS  PubMed  Google Scholar 

  70. Guay C, Menoud V, Rome S, et al. Horizontal transfer of exosomal microRNAs transduce apoptotic signals between pancreatic beta-cells. Cell Commun Signal. 2015;13:17.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs. Mol Cell. 2011;43:904–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Knoll M, Lodish HF, Sun L. Long non-coding RNAs as regulators of the endocrine system. Nat Rev Endocrinol. 2015;11:151–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Morán I, Akerman İ, Van de Bunt M, et al. Human β cell transcriptome analysis uncovers lncRNAs that are tissue-specific, dynamically regulated, and abnormally expressed in type 2 diabetes. Cell Metab. 2012;16:435–48. A comprehensive strand-specific transcriptome map of human pancreatic islets and β-cells. The study uncovers >1100 intergenic and antisense islet-cell lncRNA genes, and show that islet lncRNAs are dynamically regulated and important for β-cell differentiation and maturation.

    Article  PubMed Central  PubMed  Google Scholar 

  74. Li B, Bi C, Lang N, et al. RNA-seq methods for identifying differentially expressed gene in human pancreatic islet cells treated with pro-inflammatory cytokines. Mol Biol Rep. 2014;41:1917–25.

    Article  CAS  PubMed  Google Scholar 

  75. Benner C, van der Meulen T, Caceres E, et al. The transcriptional landscape of mouse beta cells compared to human beta cells reveals notable species differences in long non-coding RNA and protein-coding gene expression. BMC Genomics. 2014;15:620. A comprehensive mouse alpha and beta cell transcriptome study, which can be a valuable resource to improve the translatability of rodent studies.

    Article  PubMed Central  PubMed  Google Scholar 

  76. Mirza AH, Kaur S, Brorsson CA, et al. Effects of GWAS-associated genetic variants on lncRNAs within IBD and T1D candidate loci. PLoS One. 2014;9:e105723. Maps lincRNAs to genomic regions demonstrating GWAS significant association to type 1 diabetes and shows that more than fifty per cent of the genes in these regions are non-protein coding.

    Article  PubMed Central  PubMed  Google Scholar 

  77. Cabili MN, Trapnell C, Goff L, et al. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev. 2011;25:1915–27.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Nica AC, Ongen H, Irminger JC, et al. Cell-type, allelic, and genetic signatures in the human pancreatic beta cell transcriptome. Genome Res. 2013;23:1554–62. Interesting transc11riptome analysis of isolated human islet as well as beta-cells and non-beta cells making it possible to identify beta-cell specific genes.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Spitale RC, Flynn RA, Zhang QC, et al. Structural imprints in vivo decode RNA regulatory mechanisms. Nature. 2015;519:486–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Sandovici I, Hammerle C, Ozanne S, et al. Developmental and environmental epigenetic programming of the endocrine pancreas: consequences for type 2 diabetes. Cell Mol Life Sci. 2013;70:1575–95.

    Article  CAS  PubMed  Google Scholar 

  81. Raciti G, Longo M, Parrillo L, et al.: Understanding type 2 diabetes: from genetics to epigenetics. Acta Diabetol. 2015:1–7.

  82. Gilbert ER, Liu D. Epigenetics: the missing link to understanding β-cell dysfunction in the pathogenesis of type 2 diabetes. Epigenetics. 2012;7:841–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Olsson AH, Volkov P, Bacos K, et al. Genome-wide associations between genetic and epigenetic variation influence mRNA expression and insulin secretion in human pancreatic islets. PLoS Genet. 2014;10, e1004735. The study identifies a large number of mQTLs in a large set of human islets.

    Article  PubMed Central  PubMed  Google Scholar 

  84. Ling C, Poulsen P, Simonsson S, et al. Genetic and epigenetic factors are associated with expression of respiratory chain component NDUFB6 in human skeletal muscle. J Clin Invest. 2007;117:3427–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Lewis EC, Blaabjerg L, Storling J, et al. The oral histone deacetylase inhibitor ITF2357 reduces cytokines and protects islet beta cells in vivo and in vitro. Mol Med. 2011;17:369–77.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Chou Danny H-C, Holson Edward B, Wagner Florence F, et al. Inhibition of histone deacetylase 3 protects beta cells from cytokine-induced apoptosis. Chem Biol. 2012;19:669–73.

    Article  PubMed Central  PubMed  Google Scholar 

  87. De Santis M, Selmi C. The therapeutic potential of epigenetics in autoimmune diseases. Clin Rev Allergy Immunol. 2012;42:92–101.

    Article  CAS  PubMed  Google Scholar 

  88. Scharfmann R, Rachdi L, Ravassard P. Concise review: in search of unlimited sources of functional human pancreatic beta cells. Stem Cells Transl Med. 2013;2:61–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Roep BO, Atkinson M, von Herrath M. Satisfaction (not) guaranteed: re-evaluating the use of animal models of type 1 diabetes. Nat Rev Immunol. 2004;4:989–97.

    Article  CAS  PubMed  Google Scholar 

  90. Brissova M, Fowler MJ, Nicholson WE, et al. Assessment of human pancreatic islet architecture and composition by laser scanning confocal microscopy. J Histochem Cytochem. 2005;53:1087–97.

    Article  CAS  PubMed  Google Scholar 

  91. Cabrera O, Berman DM, Kenyon NS, et al. The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc Natl Acad Sci U S A. 2006;103:2334–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. In’t Veld P. Insulitis in human type 1 diabetes: a comparison between patients and animal models. Semin Immunopathol. 2014;36:569–79.

    Article  PubMed Central  PubMed  Google Scholar 

  93. Reed JC, Herold KC. Thinking bedside at the bench: the NOD mouse model of T1DM. Nat Rev Endocrinol. 2015;11:308–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Necsulea A, Kaessmann H. Evolutionary dynamics of coding and non-coding transcriptomes. Nat Rev Genet. 2014;15:734–48.

    Article  CAS  PubMed  Google Scholar 

  95. Seok J, Warren HS, Cuenca AG, et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci U S A. 2013;110:3507–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Yue F, Cheng Y, Breschi A, et al. A comparative encyclopedia of DNA elements in the mouse genome. Nature. 2014;515:355–64. A comparison of the transcriptional and cellular regulatory elements in the mouse genome with the human genome. The study demonstrates substantial conservation in functional sequences, but also finds a large degree of divergence of other sequences involved in transcriptional regulation, chromatin state and higher order chromatin organization.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Xie C, Yuan J, Li H, et al. NONCODEv4: exploring the world of long non-coding RNA genes. Nucleic Acids Res. 2014;42:D98–103.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Sabarinathan R, Tafer H, Seemann SE, et al. RNAsnp: efficient detection of local RNA secondary structure changes induced by SNPs. Hum Mutat. 2013;34:546–56.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work by the authors discussed in this review was supported by the University of Copenhagen, European Foundation for the Study of Diabetes (EFSD), National Institute of Health (NIH), Juvenile Diabetes Research Foundation (JDRF), the Danish Council for Strategic Research, the A.P. Møller Foundation, the Poul and Erna Sehested Hansen Foundation, and the Research Council at Herlev Hospital. We are grateful to Dr. Caroline Brorsson for assistance with table preparation regarding islet-expressed candidate genes.

Compliance with Ethics Guidelines

Conflict of Interest

Tina Fløyel, Simranjeet Kaur, and Flemming Pociot declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flemming Pociot.

Additional information

This article is part of the Topical Collection on Pathogenesis of Type 1 Diabetes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fløyel, T., Kaur, S. & Pociot, F. Genes Affecting β-Cell Function in Type 1 Diabetes. Curr Diab Rep 15, 97 (2015). https://doi.org/10.1007/s11892-015-0655-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-015-0655-9

Keywords

Navigation