Skip to main content

SELEX-seq: A Method for Characterizing the Complete Repertoire of Binding Site Preferences for Transcription Factor Complexes

  • Protocol
  • First Online:
Hox Genes

Abstract

The closely related members of the Hox family of homeodomain transcription factors have similar DNA-binding preferences as monomers, yet carry out distinct functions in vivo. Transcription factors often bind DNA as multiprotein complexes, raising the possibility that complex formation might modify their DNA-binding specificities. To test this hypothesis we developed a new experimental and computational platform, termed SELEX-seq, to characterize DNA-binding specificities of Hox-based multiprotein complexes. We found that complex formation with the same cofactor reveals latent specificities that are not observed for monomeric Hox factors. The findings from this in vitro platform are consistent with in vivo data, and the “latent specificity” concept serves as a precedent for how the specificities of similar transcription factors might be distinguished in vivo. Importantly, the SELEX-seq platform is flexible and can be used to determine the relative affinities to any DNA sequence for any transcription factor or multiprotein complex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hueber SD, Lohmann I (2008) Shaping segments: Hox gene function in the genomic age. Bioessays 30(10):965–979. doi:10.1002/bies.20823

    Article  CAS  PubMed  Google Scholar 

  2. Young T, Deschamps J (2009) Hox, Cdx, and anteroposterior patterning in the mouse embryo. Curr Top Dev Biol 88:235–255. doi:10.1016/S0070-2153(09)88008-3

    Article  CAS  PubMed  Google Scholar 

  3. Abramovich C, Humphries RK (2005) Hox regulation of normal and leukemic hematopoietic stem cells. Curr Opin Hematol 12(3):210–216

    Article  CAS  PubMed  Google Scholar 

  4. Mann RS, Lelli KM, Joshi R (2009) Hox specificity unique roles for cofactors and collaborators. Curr Top Dev Biol 88:63–101. doi:10.1016/S0070-2153(09)88003-4

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Conlon FL, Fairclough L, Price BM, Casey ES, Smith JC (2001) Determinants of T box protein specificity. Development 128(19):3749–3758

    CAS  PubMed  Google Scholar 

  6. Jones S (2004) An overview of the basic helix-loop-helix proteins. Genome Biol 5(6):226. doi:10.1186/gb-2004-5-6-226

    Article  PubMed Central  PubMed  Google Scholar 

  7. Hollenhorst PC, McIntosh LP, Graves BJ (2011) Genomic and biochemical insights into the specificity of ETS transcription factors. Annu Rev Biochem 80:437–471. doi:10.1146/annurev.biochem.79.081507.103945

    Article  CAS  PubMed  Google Scholar 

  8. Joshi R, Passner JM, Rohs R, Jain R, Sosinsky A, Crickmore MA, Jacob V, Aggarwal AK, Honig B, Mann RS (2007) Functional specificity of a Hox protein mediated by the recognition of minor groove structure. Cell 131(3):530–543. doi:10.1016/j.cell.2007.09.024

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Abu-Shaar M, Ryoo HD, Mann RS (1999) Control of the nuclear localization of Extradenticle by competing nuclear import and export signals. Genes Dev 13(8):935–945

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Slattery M, Riley T, Liu P, Abe N, Gomez-Alcala P, Dror I, Zhou T, Rohs R, Honig B, Bussemaker HJ, Mann RS (2011) Cofactor binding evokes latent differences in DNA binding specificity between Hox proteins. Cell 147(6):1270–1282. doi:10.1016/j.cell.2011.10.053

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249(4968):505–510

    Article  CAS  PubMed  Google Scholar 

  12. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346(6287):818–822. doi:10.1038/346818a0

    Article  CAS  PubMed  Google Scholar 

  13. Slattery M, Ma L, Negre N, White KP, Mann RS (2011) Genome-wide tissue-specific occupancy of the Hox protein Ultrabithorax and Hox cofactor Homothorax in Drosophila. PLoS One 6(4):e14686. doi:10.1371/journal.pone.0014686

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Jolma A, Yan J, Whitington T, Toivonen J, Nitta KR, Rastas P, Morgunova E, Enge M, Taipale M, Wei G, Palin K, Vaquerizas JM, Vincentelli R, Luscombe NM, Hughes TR, Lemaire P, Ukkonen E, Kivioja T, Taipale J (2013) DNA-binding specificities of human transcription factors. Cell 152(1–2):327–339. doi:10.1016/j.cell.2012.12.009

    Article  CAS  PubMed  Google Scholar 

  15. Levine HA, Nilsen-Hamilton M (2007) A mathematical analysis of SELEX. Comput Biol Chem 31(1):11–35. doi:10.1016/j.compbiolchem.2006.10.002

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Gebelein B, Culi J, Ryoo HD, Zhang W, Mann RS (2002) Specificity of Distalless repression and limb primordia development by abdominal Hox proteins. Dev Cell 3(4):487–498

    Article  CAS  PubMed  Google Scholar 

  17. Noro B, Lelli K, Sun L, Mann RS (2011) Competition for cofactor-dependent DNA binding underlies Hox phenotypic suppression. Genes Dev 25(22):2327–2332. doi:10.1101/gad.175539.111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Jolma A, Kivioja T, Toivonen J, Cheng L, Wei G, Enge M, Taipale M, Vaquerizas JM, Yan J, Sillanpaa MJ, Bonke M, Palin K, Talukder S, Hughes TR, Luscombe NM, Ukkonen E, Taipale J (2010) Multiplexed massively parallel SELEX for characterization of human transcription factor binding specificities. Genome Res 20(6):861–873. doi:10.1101/gr.100552.109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the members of the Bussemaker and Mann labs for comments and feedback during the course of these studies. This work was supported by NIH grants R01GM054510, R01HG003008, U54CA121852, and P50GM071508; a John Simon Guggenheim Foundation Fellowship; and Columbia University’s RISE program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Richard S. Mann or Harmen J. Bussemaker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Riley, T.R. et al. (2014). SELEX-seq: A Method for Characterizing the Complete Repertoire of Binding Site Preferences for Transcription Factor Complexes. In: Graba, Y., Rezsohazy, R. (eds) Hox Genes. Methods in Molecular Biology, vol 1196. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1242-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1242-1_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1241-4

  • Online ISBN: 978-1-4939-1242-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics