Skip to main content
Log in

The mTOR Signaling Pathway in Myocardial Dysfunction in Type 2 Diabetes Mellitus

  • Pathogenesis of Type 2 Diabetes and Insulin Resistance (RM Watanabe, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

T2DM (type 2 diabetes mellitus) is a risk factor for heart failure. The mTOR (mechanistic target of rapamycin) is a key mediator of the insulin signaling pathway. We will discuss the role of mTOR in myocardial dysfunction in T2DM.

Recent Findings

In T2DM, chronically activated mTOR induces multiple pathological events, including a negative feedback loop that suppresses IRS (insulin receptor substrate)-1. While short-term treatment with rapamycin, an mTOR inhibitor, is a promising strategy for cardiac diseases such as acute myocardial infarction and cardiac hypertrophy in T2DM, there are many concerns about chronic usage of rapamycin. Two mTOR complexes, mTORC1 and mTORC2, affect many molecules and processes via distinct signaling pathways that regulate cardiomyocyte function and survival.

Summary

Understanding mechanisms underlying mTOR-mediated pathophysiological features in the heart is essential for developing effective therapies for cardiac diseases in the context of T2DM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Writing Group M, Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, et al. Heart disease and stroke statistics—2016 update: a report from the American Heart Association. Circulation. 2016;133(4):e38–360. doi:10.1161/CIR.0000000000000350.

    Article  Google Scholar 

  2. Fox CS, Coady S, Sorlie PD, D’Agostino Sr RB, Pencina MJ, Vasan RS, et al. Increasing cardiovascular disease burden due to diabetes mellitus: the Framingham Heart Study. Circulation. 2007;115(12):1544–50. doi:10.1161/CIRCULATIONAHA.106.658948.

    Article  PubMed  Google Scholar 

  3. •• Shimobayashi M, Hall MN. Making new contacts: the mTOR network in metabolism and signalling crosstalk. Nat Rev Mol Cell Biol. 2014;15(3):155–62. doi:10.1038/nrm3757. A comprehensive review of mTOR pathways, especially in metabolism and signaling crosstalk, providing new insight into the modulation of mTOR by other pathways.

    Article  CAS  PubMed  Google Scholar 

  4. Zhang P, Xu X, Hu X, van Deel ED, Zhu G, Chen Y. Inducible nitric oxide synthase deficiency protects the heart from systolic overload-induced ventricular hypertrophy and congestive heart failure. Circ Res. 2007;100(7):1089–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shende P, Plaisance I, Morandi C, Pellieux C, Berthonneche C, Zorzato F, et al. Cardiac raptor ablation impairs adaptive hypertrophy, alters metabolic gene expression, and causes heart failure in mice. Circulation. 2011;123(10):1073–82. doi:10.1161/CIRCULATIONAHA.110.977066.

    Article  PubMed  Google Scholar 

  6. Aoyagi T, Kusakari Y, Xiao CY, Inouye BT, Takahashi M, Scherrer-Crosbie M, et al. Cardiac mTOR protects the heart against ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol. 2012;303(1):H75–85. doi:10.1152/ajpheart.00241.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. • Aoyagi T, Higa JK, Aoyagi H, Yorichika N, Shimada BK, Matsui T. Cardiac mTOR rescues the detrimental effects of diet-induced obesity in the heart after ischemia-reperfusion. Am J Physiol Heart Circ Physiol. 2015;308(12):H1530–9. doi:10.1152/ajpheart.00008.2015. This study shows the cardioportective effects of mTOR in diet-induced obesity with insulin resistance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sabatini DM, Erdjument-Bromage H, Lui M, Tempst P, Snyder SH. RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell. 1994;78(1):35–43.

    Article  CAS  PubMed  Google Scholar 

  9. Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H, et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell. 2002;110(2):163–75.

    Article  CAS  PubMed  Google Scholar 

  10. Hara K, Maruki Y, Long X, Yoshino K, Oshiro N, Hidayat S, et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell. 2002;110(2):177–89.

    Article  CAS  PubMed  Google Scholar 

  11. Kim DH, Sarbassov DD, Ali SM, Latek RR, Guntur KV, Erdjument-Bromage H, et al. Gbeta L, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol Cell. 2003;11(4):895–904.

    Article  CAS  PubMed  Google Scholar 

  12. Peterson TR, Laplante M, Thoreen CC, Sancak Y, Kang SA, Kuehl WM, et al. DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell. 2009;137(5):873–86. doi:10.1016/j.cell.2009.03.046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sancak Y, Thoreen CC, Peterson TR, Lindquist RA, Kang SA, Spooner E, et al. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell. 2007;25(6):903–15. doi:10.1016/j.molcel.2007.03.003.

    Article  CAS  PubMed  Google Scholar 

  14. Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR, Erdjument-Bromage H, et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol. 2004;14(14):1296–302. doi:10.1016/j.cub.2004.06.054.

    Article  CAS  PubMed  Google Scholar 

  15. Jacinto E, Facchinetti V, Liu D, Soto N, Wei S, Jung SY, et al. SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell. 2006;127(1):125–37. doi:10.1016/j.cell.2006.08.033.

    Article  CAS  PubMed  Google Scholar 

  16. Kaizuka T, Hara T, Oshiro N, Kikkawa U, Yonezawa K, Takehana K, et al. Tti1 and Tel2 are critical factors in mammalian target of rapamycin complex assembly. J Biol Chem. 2010;285(26):20109–16. doi:10.1074/jbc.M110.121699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Takai H, Wang RC, Takai KK, Yang H, de Lange T. Tel2 regulates the stability of PI3K-related protein kinases. Cell. 2007;131(7):1248–59. doi:10.1016/j.cell.2007.10.052.

    Article  CAS  PubMed  Google Scholar 

  18. Fernandez-Saiz V, Targosz BS, Lemeer S, Eichner R, Langer C, Bullinger L, et al. SCFFbxo9 and CK2 direct the cellular response to growth factor withdrawal via Tel2/Tti1 degradation and promote survival in multiple myeloma. Nat Cell Biol. 2013;15(1):72–81. doi:10.1038/ncb2651.

    Article  CAS  PubMed  Google Scholar 

  19. Inoki K, Li Y, Zhu T, Wu J, Guan KL. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol. 2002;4(9):648–57. doi:10.1038/ncb839.

    Article  CAS  PubMed  Google Scholar 

  20. Potter CJ, Pedraza LG, Xu T. Akt regulates growth by directly phosphorylating Tsc2. Nat Cell Biol. 2002;4(9):658–65. doi:10.1038/ncb840.

    Article  CAS  PubMed  Google Scholar 

  21. Garami A, Zwartkruis FJ, Nobukuni T, Joaquin M, Roccio M, Stocker H, et al. Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2. Mol Cell. 2003;11(6):1457–66.

    Article  CAS  PubMed  Google Scholar 

  22. Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and survival. Cell. 2003a;115(5):577–90.

    Article  CAS  PubMed  Google Scholar 

  23. Inoki K, Li Y, Xu T, Guan KL. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev. 2003b;17(15):1829–34. doi:10.1101/gad.1110003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell. 2008;30(2):214–26. doi:10.1016/j.molcel.2008.03.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Inoki K, Ouyang H, Zhu T, Lindvall C, Wang Y, Zhang X, et al. TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell. 2006;126(5):955–68. doi:10.1016/j.cell.2006.06.055.

    Article  CAS  PubMed  Google Scholar 

  26. Jewell JL, Russell RC, Guan KL. Amino acid signalling upstream of mTOR. Nat Rev Mol Cell Biol. 2013;14(3):133–9. doi:10.1038/nrm3522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ma XM, Blenis J. Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol. 2009;10(5):307–18.

    Article  PubMed  Google Scholar 

  28. Holz MK, Ballif BA, Gygi SP, Blenis J. mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events. Cell. 2005;123(4):569–80. doi:10.1016/j.cell.2005.10.024.

    Article  CAS  PubMed  Google Scholar 

  29. Um SH, Frigerio F, Watanabe M, Picard F, Joaquin M, Sticker M, et al. Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature. 2004;431(7005):200–5. doi:10.1038/nature02866.

    Article  CAS  PubMed  Google Scholar 

  30. Hara K, Yonezawa K, Kozlowski MT, Sugimoto T, Andrabi K, Weng QP, et al. Regulation of eIF-4E BP1 phosphorylation by mTOR. J Biol Chem. 1997;272(42):26457–63.

    Article  CAS  PubMed  Google Scholar 

  31. Kim J, Kundu M, Viollet B, Guan KL. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 2011;13(2):132–41. doi:10.1038/ncb2152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zinzalla V, Stracka D, Oppliger W, Hall MN. Activation of mTORC2 by association with the ribosome. Cell. 2011;144(5):757–68. doi:10.1016/j.cell.2011.02.014.

    Article  CAS  PubMed  Google Scholar 

  33. Jacinto E, Loewith R, Schmidt A, Lin S, Ruegg MA, Hall A, et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol. 2004;6(11):1122–8. doi:10.1038/ncb1183.

    Article  CAS  PubMed  Google Scholar 

  34. Sarbassov DD, Ali SM, Sengupta S, Sheen JH, Hsu PP, Bagley AF, et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell. 2006;22(2):159–68. doi:10.1016/j.molcel.2006.03.029.

    Article  CAS  PubMed  Google Scholar 

  35. Lamming DW, Ye L, Katajisto P, Goncalves MD, Saitoh M, Stevens DM, et al. Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science. 2012;335(6076):1638–43. doi:10.1126/science.1215135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Garcia-Martinez JM, Alessi DR. mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1). The Biochemical journal. 2008;416(3):375–85. doi:10.1042/BJ20081668.

    Article  CAS  PubMed  Google Scholar 

  37. Facchinetti V, Ouyang W, Wei H, Soto N, Lazorchak A, Gould C, et al. The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C. EMBO J. 2008;27(14):1932–43. doi:10.1038/emboj.2008.120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science. 2005;307(5712):1098–101.

    Article  CAS  PubMed  Google Scholar 

  39. Guertin DA, Stevens DM, Thoreen CC, Burds AA, Kalaany NY, Moffat J, et al. Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev Cell. 2006;11(6):859–71. doi:10.1016/j.devcel.2006.10.007.

    Article  CAS  PubMed  Google Scholar 

  40. Shigeyama Y, Kobayashi T, Kido Y, Hashimoto N, Asahara S, Matsuda T, et al. Biphasic response of pancreatic beta-cell mass to ablation of tuberous sclerosis complex 2 in mice. Mol Cell Biol. 2008;28(9):2971–9. doi:10.1128/MCB.01695-07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rachdi L, Balcazar N, Osorio-Duque F, Elghazi L, Weiss A, Gould A, et al. Disruption of Tsc2 in pancreatic beta cells induces beta cell mass expansion and improved glucose tolerance in a TORC1-dependent manner. Proc Natl Acad Sci U S A. 2008;105(27):9250–5. doi:10.1073/pnas.0803047105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pende M, Kozma SC, Jaquet M, Oorschot V, Burcelin R, Le Marchand-Brustel Y, et al. Hypoinsulinaemia, glucose intolerance and diminished beta-cell size in S6K1-deficient mice. Nature. 2000;408(6815):994–7. doi:10.1038/35050135.

    Article  CAS  PubMed  Google Scholar 

  43. Um SH, D’Alessio D, Thomas G. Nutrient overload, insulin resistance, and ribosomal protein S6 kinase 1, S6K1. Cell Metab. 2006;3(6):393–402.

    Article  CAS  PubMed  Google Scholar 

  44. Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell. 2012;149(2):274–93. doi:10.1016/j.cell.2012.03.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yu Y, Yoon SO, Poulogiannis G, Yang Q, Ma XM, Villen J, et al. Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science. 2011;332(6035):1322–6. doi:10.1126/science.1199484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hsu PP, Kang SA, Rameseder J, Zhang Y, Ottina KA, Lim D, et al. The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science. 2011;332(6035):1317–22. doi:10.1126/science.1199498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol. 2011;12(1):21–35. doi:10.1038/nrm3025.

    Article  CAS  PubMed  Google Scholar 

  48. Gu Y, Lindner J, Kumar A, Yuan W, Magnuson MA. Rictor/mTORC2 is essential for maintaining a balance between beta-cell proliferation and cell size. Diabetes. 2011;60(3):827–37. doi:10.2337/db10-1194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tesfamariam B, Cohen RA. Free radicals mediate endothelial cell dysfunction caused by elevated glucose. Am J Phys. 1992;263(2 Pt 2):H321–6.

    CAS  Google Scholar 

  50. Frustaci A, Kajstura J, Chimenti C, Jakoniuk I, Leri A, Maseri A, et al. Myocardial cell death in human diabetes. Circ Res. 2000;87(12):1123–32.

    Article  CAS  PubMed  Google Scholar 

  51. Kannel WB, Hjortland M, Castelli WP. Role of diabetes in congestive heart failure: the Framingham study. Am J Cardiol. 1974;34(1):29–34.

    Article  CAS  PubMed  Google Scholar 

  52. Nathan DM, Cleary PA, Backlund JY, Genuth SM, Lachin JM, Orchard TJ, et al. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med. 2005;353(25):2643–53. doi:10.1056/NEJMoa052187.

    Article  PubMed  Google Scholar 

  53. Group AC, Patel A, MacMahon S, Chalmers J, Neal B, Billot L, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358(24):2560–72. doi:10.1056/NEJMoa0802987.

    Article  Google Scholar 

  54. Bell DS. Heart failure: the frequent, forgotten, and often fatal complication of diabetes. Diabetes Care. 2003;26(8):2433–41.

    Article  PubMed  Google Scholar 

  55. Bell DS. Diabetes: a cardiac condition manifesting as hyperglycemia. Endocr Pract. 2008;14(7):924–32. doi:10.4158/EP.14.7.924.

    Article  PubMed  Google Scholar 

  56. Gilbert RE, Krum H. Heart failure in diabetes: effects of anti-hyperglycaemic drug therapy. Lancet. 2015;385(9982):2107–17. doi:10.1016/s0140-6736(14)61402-1.

    Article  CAS  PubMed  Google Scholar 

  57. Ferrannini E, Cushman WC. Diabetes and hypertension: the bad companions. Lancet. 2012;380(9841):601–10. doi:10.1016/s0140-6736(12)60987-8.

    Article  PubMed  Google Scholar 

  58. Regan TJ, Wu CF, Yeh CK, Oldewurtel HA, Haider B. Myocardial composition and function in diabetes. The effects of chronic insulin use. Circ Res. 1981;49(6):1268–77.

    Article  CAS  PubMed  Google Scholar 

  59. •• Sciarretta S, Volpe M, Sadoshima J. Mammalian target of rapamycin signaling in cardiac physiology and disease. Circ Res. 2014;114(3):549–64. doi:10.1161/CIRCRESAHA.114.302022. In-depth review that demonstrates the role of mTOR signaling pathway in the regulation of cardiac pathophysiology such as cardiac homeostasis, hypertrophy, ischemia, and metabolic disorders.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kim JA, Jang HJ, Martinez-Lemus LA, Sowers JR. Activation of mTOR/p70S6 kinase by ANG II inhibits insulin-stimulated endothelial nitric oxide synthase and vasodilation. Am J Physiol Endocrinol Metab. 2012;302(2):E201–8. doi:10.1152/ajpendo.00497.2011.

    Article  CAS  PubMed  Google Scholar 

  61. Sadoshima J, Izumo S. Rapamycin selectively inhibits angiotensin II-induced increase in protein synthesis in cardiac myocytes in vitro. Potential role of 70-kD S6 kinase in angiotensin II-induced cardiac hypertrophy. Circ Res. 1995;77(6):1040–52.

    Article  CAS  PubMed  Google Scholar 

  62. Lavandero S, Foncea R, Perez V, Sapag-Hagar M. Effect of inhibitors of signal transduction on IGF-1-induced protein synthesis associated with hypertrophy in cultured neonatal rat ventricular myocytes. FEBS Lett. 1998;422(2):193–6.

    Article  CAS  PubMed  Google Scholar 

  63. Simm A, Schluter K, Diez C, Piper HM, Hoppe J. Activation of p70(S6) kinase by beta-adrenoceptor agonists on adult cardiomyocytes. J Mol Cell Cardiol. 1998;30(10):2059–67.

    Article  CAS  PubMed  Google Scholar 

  64. Proud CG. Ras, PI3-kinase and mTOR signaling in cardiac hypertrophy. Cardiovasc Res. 2004;63(3):403–13. doi:10.1016/j.cardiores.2004.02.003.

    Article  CAS  PubMed  Google Scholar 

  65. Malhowski AJ, Hira H, Bashiruddin S, Warburton R, Goto J, Robert B, et al. Smooth muscle protein-22-mediated deletion of Tsc1 results in cardiac hypertrophy that is mTORC1-mediated and reversed by rapamycin. Hum Mol Genet. 2011;20(7):1290–305. doi:10.1093/hmg/ddq570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Shioi T, McMullen JR, Tarnavski O, Converso K, Sherwood MC, Manning WJ, et al. Rapamycin attenuates load-induced cardiac hypertrophy in mice. Circulation. 2003;107(12):1664–70.

    Article  CAS  PubMed  Google Scholar 

  67. Soesanto W, Lin HY, Hu E, Lefler S, Litwin SE, Sena S, et al. Mammalian target of rapamycin is a critical regulator of cardiac hypertrophy in spontaneously hypertensive rats. Hypertension. 2009;54(6):1321–7. doi:10.1161/HYPERTENSIONAHA.109.138818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Harston RK, McKillop JC, Moschella PC, Van Laer A, Quinones LS, Baicu CF, et al. Rapamycin treatment augments both protein ubiquitination and Akt activation in pressure-overloaded rat myocardium. Am J Physiol Heart Circ Physiol. 2011;300(5):H1696–706. doi:10.1152/ajpheart.00545.2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Volkers M, Toko H, Doroudgar S, Din S, Quijada P, Joyo AY, et al. Pathological hypertrophy amelioration by PRAS40-mediated inhibition of mTORC1. Proc Natl Acad Sci U S A. 2013a;110(31):12661–6. doi:10.1073/pnas.1301455110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhang D, Contu R, Latronico MV, Zhang JL, Rizzi R, Catalucci D, et al. MTORC1 regulates cardiac function and myocyte survival through 4E-BP1 inhibition in mice. J Clin Invest. 2010;120(8):2805–16. doi:10.1172/JCI43008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Song X, Kusakari Y, Xiao CY, Kinsella SD, Rosenberg MA, Scherrer-Crosbie M, et al. mTOR attenuates the inflammatory response in cardiomyocytes and prevents cardiac dysfunction in pathological hypertrophy. Am J Physiol Cell Physiol. 2010;299(6):C1256–66. doi:10.1152/ajpcell.00338.2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Matsui T, Li L, Wu JC, Cook SA, Nagoshi T, Picard MH, et al. Phenotypic spectrum caused by transgenic overexpression of activated Akt in the heart. J Biol Chem. 2002;277(25):22896–901. doi:10.1074/jbc.M200347200.

    Article  CAS  PubMed  Google Scholar 

  73. Gregg EW, Li Y, Wang J, Burrows NR, Ali MK, Rolka D, et al. Changes in diabetes-related complications in the United States, 1990-2010. N Engl J Med. 2014;370(16):1514–23. doi:10.1056/NEJMoa1310799.

    Article  CAS  PubMed  Google Scholar 

  74. Nathan DM. Diabetes: advances in diagnosis and treatment. JAMA. 2015;314(10):1052–62. doi:10.1001/jama.2015.9536.

    Article  CAS  PubMed  Google Scholar 

  75. Sciarretta S, Zhai P, Shao D, Maejima Y, Robbins J, Volpe M, et al. Rheb is a critical regulator of autophagy during myocardial ischemia: pathophysiological implications in obesity and metabolic syndrome. Circulation. 2012;125(9):1134–46. doi:10.1161/CIRCULATIONAHA.111.078212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhai P, Sciarretta S, Galeotti J, Volpe M, Sadoshima J. Differential roles of GSK-3beta during myocardial ischemia and ischemia/reperfusion. Circ Res. 2011;109(5):502–11. doi:10.1161/CIRCRESAHA.111.249532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Matsui Y, Takagi H, Qu X, Abdellatif M, Sakoda H, Asano T, et al. Distinct roles of autophagy in the heart during ischemia and reperfusion. Roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res. 2007;100(6):914–22. doi:10.1161/01.RES.0000261924.76669.36.

    Article  CAS  PubMed  Google Scholar 

  78. Buss SJ, Muenz S, Riffel JH, Malekar P, Hagenmueller M, Weiss CS, et al. Beneficial effects of mammalian target of rapamycin inhibition on left ventricular remodeling after myocardial infarction. J Am Coll Cardiol. 2009;54(25):2435–46. doi:10.1016/j.jacc.2009.08.031.

    Article  CAS  PubMed  Google Scholar 

  79. Volkers M, Konstandin MH, Doroudgar S, Toko H, Quijada P, Din S, et al. Mechanistic target of rapamycin complex 2 protects the heart from ischemic damage. Circulation. 2013b;128(19):2132–44. doi:10.1161/CIRCULATIONAHA.113.003638.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med. 2007;357(11):1121–35. doi:10.1056/NEJMra071667.

    Article  CAS  PubMed  Google Scholar 

  81. Das A, Salloum FN, Durrant D, Ockaili R, Kukreja RC. Rapamycin protects against myocardial ischemia-reperfusion injury through JAK2-STAT3 signaling pathway. J Mol Cell Cardiol. 2012;53(6):858–69. doi:10.1016/j.yjmcc.2012.09.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Das A, Salloum FN, Filippone SM, Durrant DE, Rokosh G, Bolli R, et al. Inhibition of mammalian target of rapamycin protects against reperfusion injury in diabetic heart through STAT3 signaling. Basic Res Cardiol. 2015;110(3):31. doi:10.1007/s00395-015-0486-5.

    Article  PubMed  Google Scholar 

  83. Karch J, Molkentin JD. Regulated necrotic cell death: the passive aggressive side of Bax and Bak. Circ Res. 2015;116(11):1800–9. doi:10.1161/CIRCRESAHA.116.305421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Betz C, Stracka D, Prescianotto-Baschong C, Frieden M, Demaurex N, Hall MN. Feature article: mTOR complex 2-Akt signaling at mitochondria-associated endoplasmic reticulum membranes (MAM) regulates mitochondrial physiology. Proc Natl Acad Sci U S A. 2013;110(31):12526–34. doi:10.1073/pnas.1302455110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Finkel T, Menazza S, Holmstrom KM, Parks RJ, Liu J, Sun J, et al. The ins and outs of mitochondrial calcium. Circ Res. 2015;116(11):1810–9. doi:10.1161/CIRCRESAHA.116.305484.

    Article  CAS  PubMed  Google Scholar 

  86. Rubler S, Dlugash J, Yuceoglu YZ, Kumral T, Branwood AW, Grishman A. New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol. 1972;30(6):595–602.

    Article  CAS  PubMed  Google Scholar 

  87. Jia G, DeMarco VG, Sowers JR. Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy. Nat Rev Endocrinol. 2016;12(3):144–53. doi:10.1038/nrendo.2015.216.

    Article  CAS  PubMed  Google Scholar 

  88. Litwin SE. Diabetes and the heart: is there objective evidence of a human diabetic cardiomyopathy? Diabetes. 2013;62(10):3329–30. doi:10.2337/db13-0683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Authors/Task Force M, Ryden L, Grant PJ, Anker SD, Berne C, Cosentino F, et al. ESC guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD: the Task Force on diabetes, pre-diabetes, and cardiovascular diseases of the European Society of Cardiology (ESC) and developed in collaboration with the European Association for the Study of Diabetes (EASD). Eur Heart J. 2013;34(39):3035–87. doi:10.1093/eurheartj/eht108.

    Article  Google Scholar 

  90. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey Jr DE, Drazner MH, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013;62(16):e147–239. doi:10.1016/j.jacc.2013.05.019.

    Article  PubMed  Google Scholar 

  91. Goldberg IJ, Trent CM, Schulze PC. Lipid metabolism and toxicity in the heart. Cell Metab. 2012;15(6):805–12. doi:10.1016/j.cmet.2012.04.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Volkers M, Doroudgar S, Nguyen N, Konstandin MH, Quijada P, Din S, et al. PRAS40 prevents development of diabetic cardiomyopathy and improves hepatic insulin sensitivity in obesity. EMBO Mol Med. 2014;6(1):57–65. doi:10.1002/emmm.201303183.

    Article  PubMed  Google Scholar 

  93. • Kanamori H, Takemura G, Goto K, Tsujimoto A, Mikami A, Ogino A, et al. Autophagic adaptations in diabetic cardiomyopathy differ between type 1 and type 2 diabetes. Autophagy. 2015;11(7):1146–60. doi:10.1080/15548627.2015.1051295. This study demonstrates and compares different autophagic adaptations seen in diabetic cardiomyopathy between type 1 and type 2 DM. It also reports AMPK suppression, mTORC1 activation, and autophagy inhibition in T2DM hearts.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Siontis GC, Stefanini GG, Mavridis D, Siontis KC, Alfonso F, Perez-Vizcayno MJ, et al. Percutaneous coronary interventional strategies for treatment of in-stent restenosis: a network meta-analysis. Lancet. 2015;386(9994):655–64. doi:10.1016/S0140-6736(15)60657-2.

    Article  PubMed  Google Scholar 

  95. Li J, Kim SG, Blenis J. Rapamycin: one drug, many effects. Cell Metab. 2014;19(3):373–9. doi:10.1016/j.cmet.2014.01.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Krebs M, Brunmair B, Brehm A, Artwohl M, Szendroedi J, Nowotny P, et al. The mammalian target of rapamycin pathway regulates nutrient-sensitive glucose uptake in man. Diabetes. 2007;56(6):1600–7. doi:10.2337/db06-1016.

    Article  CAS  PubMed  Google Scholar 

  97. Fraenkel M, Ketzinel-Gilad M, Ariav Y, Pappo O, Karaca M, Castel J, et al. mTOR inhibition by rapamycin prevents beta-cell adaptation to hyperglycemia and exacerbates the metabolic state in type 2 diabetes. Diabetes. 2008;57(4):945–57. doi:10.2337/db07-0922.

    Article  CAS  PubMed  Google Scholar 

  98. Houde VP, Brule S, Festuccia WT, Blanchard PG, Bellmann K, Deshaies Y, et al. Chronic rapamycin treatment causes glucose intolerance and hyperlipidemia by upregulating hepatic gluconeogenesis and impairing lipid deposition in adipose tissue. Diabetes. 2010;59(6):1338–48. doi:10.2337/db09-1324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Investig. 2001;108(8):1167–74. doi:10.1172/jci13505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kalender A, Selvaraj A, Kim SY, Gulati P, Brule S, Viollet B, et al. Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metab. 2010;11(5):390–401. doi:10.1016/j.cmet.2010.03.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a research grant from the Mitsukoshi Health and Welfare Foundation, Japan (TS), a research grant from Kochi Organization for Medical Reformation and Renewal, Japan (YB), and an NIH training grant (T32HL115505 to BKS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Matsui.

Ethics declarations

Conflict of Interest

Tomohiro Suhara, Yuichi Baba, Briana K. Shimada, Jason K. Higa, and Takashi Matsui declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

Since this is a review article, it does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Pathogenesis of Type 2 Diabetes and Insulin Resistance

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suhara, T., Baba, Y., Shimada, B.K. et al. The mTOR Signaling Pathway in Myocardial Dysfunction in Type 2 Diabetes Mellitus. Curr Diab Rep 17, 38 (2017). https://doi.org/10.1007/s11892-017-0865-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-017-0865-4

Keywords

Navigation