Skip to main content
Log in

Reactive, degenerative, and proliferative Schwann cell responses in experimental galactose and human diabetic neuropathy

  • Regular paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Despite early descriptions of hypertrophic Schwann cells and onion-bulb formation in patients with diabetic neuropathy, clinical and experimental studies have emphasized axonal pathology. In recent years, the Schwann cell has been further implicated in diabetic neuropathy because it is the primary intrafascicular location for the first enzyme of the polyol pathway, aldose reductase, which appears to have a role in modulating a variety of complications of diabetes, including diabetic neuropathy. To further explore the role of polyol pathway flux in the pathogenesis of Schwann cell injury, ultrastructural abnormalities of Schwann cells in human diabetic neuropathy (HDN) were compared with those in experimental galactose neuropathy (EGN), a well-characterized model of hyperglycemia without hypoinsulinemia. Similar to previous studies of EGN, reactive, degenerative and proliferative changes of Schwann cells were observed after 2, 4 and 24 months of galactose intoxication. Reactive changes included accumulation of lipid droplets, π granules of Reich and glycogen granules, increased numbers of subplasmalemmal vesicles, cytoplasmic expansion, and capping. Degenerative changes included enlargement of mitochondria and effacement of cristae, and disintegration of both abaxonal and adaxonal cytosol and organelles. Both demyelination and onion-bulb formation were seen at all time points, although supernumerary Schwann cells and axonal degeneration were most numerous after 24 months of galactose feeding. In sural nerve biopsy samples from patients with diabetes and progressive worsening of neuropathy, ultrastructural abnormalities in Schwann cells encompassed the full range of reactive, degenerative and proliferative changes described in galactose-fed rats. The concordance of fine-structural observations in nerves from galactose-fed rats and these adult-onset diabetic patients emphasizes the role of flux through aldose reductase in the complex pathology of diabetic neuropathy and points to the utility of galactose intoxication in helping to understand this metabolic disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received: 21 April 1997 / Revised, accepted: 19 June 1997

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalichman, M., Powell, H. & Mizisin, A. Reactive, degenerative, and proliferative Schwann cell responses in experimental galactose and human diabetic neuropathy. Acta Neuropathol 95, 47–56 (1997). https://doi.org/10.1007/s004010050764

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s004010050764

Navigation