Skip to main content

Advertisement

Log in

Update on Diabetic Cardiomyopathy: Inches Forward, Miles to Go

  • Management of Macrovascular Disease in Diabetes (S Inzucchi and R Goldberg, Section Editors)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Diabetes causes cardiomyopathy, both directly and by potentiating the effect of its common comorbidities, coronary artery disease and hypertension, on its development. With the common and growing prevalence of diabetes worldwide, diabetic cardiomyopathy is a significant public health problem. Recent research identifies both mitochondrial dysfunction and epigenetic effects as newly recognized factors in the complex pathogenesis of diabetic cardiomyopathy. Diagnostically, specialized echocardiography techniques, cardiac magnetic resonance imaging, and serologic biomarkers all appear to have promise in detecting the early stages of diabetic cardiomyopathy. Research into treatments includes both traditional diabetes and heart failure therapies, but also explores the potential of newer metabolic and anti-inflammatory agents. These recent insights provide important additions to our knowledge about diabetic cardiomyopathy, but much remains unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Rubler S, Dlugash J, Yuceoglu YZ, et al. New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol. 1972;30:595–602.

    Article  PubMed  CAS  Google Scholar 

  2. Aneja A, Tang W, Bansilal S, et al. Diabetic cardiomyopathy: insights into pathogenesis, diagnostic challenges, and therapeutic options. Am J Med. 2008;121(9):748–57.

    Article  PubMed  Google Scholar 

  3. Masoudi FA, Inzucchi SE. Diabetes mellitus and heart failure: epidemiology, mechanisms, and pharmacotherapy. Am J Cardiol. 2007;99(4):113–32.

    Article  Google Scholar 

  4. Battiprolu P, Gillette T, Wang Z, Lavandero S, Hill J. Diabetic cardiomyopathy: mechanisms and therapeutic targets. Drug Discov Today Dis Mech. 2010;7(2):e135–43.

    Article  PubMed  CAS  Google Scholar 

  5. Fang ZY, Prins JB, Marwick TH. Diabetic cardiomyopathy: evidence, mechanisms, and therapeutic implications. Endocr Rev. 2004;25(4):543–67.

    Article  PubMed  CAS  Google Scholar 

  6. Sasso FC, Rambaldi PF, Carbonara O, et al. Perspectives of nuclear diagnostic imaging in diabetic cardiomyopathy. Nutr Metab Cardiovasc Dis. 2010;20(3):208–16.

    Article  PubMed  CAS  Google Scholar 

  7. Murarka S, Movahed MR. Diabetic cardiomyopathy. J Card Fail. 2010;16(12):971–9.

    Article  PubMed  Google Scholar 

  8. Van Buren P, LeWinter M. Heart failure: a companion to Braunwald’s heart disease. Chapter 26—heart failure as a consequence of diabetic cardiomyopathy. Elsevier Inc. 2011. pp. 408–418.

  9. Shindler DM, Kostis JB, Yusuf S, et al. Diabetes Mellitus, a predictor of morbidity and mortality in the studies of the left ventricular dysfunction (SOLVD) trials and registry. Am J Cardiol. 1996;77:1017–20.

    Article  PubMed  CAS  Google Scholar 

  10. Ryden L, Armstrong PW, Cleland JG, et al. Efficacy and safety of high dose lisinopril in chronic heart failure patients at high cardiovascular risk, including those with diabetes mellitus. Results from the ATLAS trial. Eur Heart J. 2000;21:1967–78.

    Article  PubMed  CAS  Google Scholar 

  11. National Diabetes Information Clearinghouse. Available at http://diabetes.niddk.nih.gov/DM/PUBS/statistics/#Diagnosed20. Accessed December 2011.

  12. •• Maisch B, Alter P, Pankuweit S. Diabetic cardiomyopathy – fact or fiction? Herz. 2011;36(2):102–15. This review provided a new, expanded classification of diabetic cardiomyopathy stages..

    Article  PubMed  CAS  Google Scholar 

  13. •• Singh G, Sharma R, Khullar M. Epigenetics and diabetic cardiomyopathy. Diabetes Res Clin Pract. 2011;94(1):14–21. This review outlined the role of epigenetic phenomena in diabetic cardiomyopathy.

    Article  PubMed  CAS  Google Scholar 

  14. Voulgari C, Papadoglannis D, Tentolouris N. Diabetic cardiomyopathy: from the pathophysiology of the cardiac myocytes to current diagnosis and management strategies. Vasc Health Risk Manag. 2010;6:883–903.

    Article  PubMed  CAS  Google Scholar 

  15. Mytas DZ, Stougiannos PN, Zairis MN, et al. Diabetic myocardial disease: pathophysiology, early diagnosis and therapeutic options. J Diabetes Complications. 2009;23(4):273–82.

    Article  PubMed  Google Scholar 

  16. Tarquini R, Lazzeri C, Pala L, Rotella CM, Gensini GF. The diabetic cardiomyopathy. Acta Diabetol. 2011;48(3):173–81.

    Article  PubMed  Google Scholar 

  17. Wenmeng W, Qizhu T. Early administration of trimetazidine may prevent or ameliorate diabetic cardiomyopathy. Med Hypotheses. 2011;76(2):181–3.

    Article  PubMed  Google Scholar 

  18. Rollm N, Ingul C, Hansen H, et al. Increased sensitivity to ischemia in an early diabetic cardiomyopathy: the role of calcium handling. Biophys J. 2009;96(3):119a.

    Article  Google Scholar 

  19. Falcao-Pires I, Leite-Moreira AF. Diabetic cardiomyopathy: understanding the molecular and cellular basis to progression diagnosis and treatment. Heart Fail Rev. 2011; [Epub ahead of print].

  20. Flotats A, Carrio I. Is cardiac autonomic neuropathy the basis of non-ischemic diabetic cardiomyopathy? JACC: Cardiovasc Imag. 2010;3(12):1216–7.

    Article  Google Scholar 

  21. Mustonen J, Mantysaari M, Kuikka J. Decreased myocardial 123I-metaiodobenzylguanidine uptake is associated with disturbed LV diastolic filling in diabetes. Am Heart J. 1992;123:804–5.

    Article  PubMed  CAS  Google Scholar 

  22. Bisognano JD, Weinberger HD, Bohimeyer TJ, et al. Myocardial-directed overexpression of the human B(1)-adrenergic receptor in transgenic mice. J Mol Cell Cardiol. 2000;32:817–30.

    Article  PubMed  CAS  Google Scholar 

  23. •• Duncan JG. Mitochondrial dysfunction in diabetic cardiomyopathy. Biochim Biophys Acta Mol Cell Res. 2011;1813(7):1351–9. This review outlined the role of mitochondrial dysfunction in the pathophysiology of diabetic cardiomyopathy.

    Article  CAS  Google Scholar 

  24. Berg TJ, Snorgaard O, Faber J, et al. Serum levels of advanced glycation end products are associated with left ventricular diastolic function in patients with type 1 diabetes. Diabetes Care. 1999;22:118–1190.

    Article  Google Scholar 

  25. Kajstura J, Fiordaliso F, Androli AM, et al. IGF-1 overexpression inhibits the development of diabetic cardiomyopathy and angiotensin II-medicated oxidative stress. Diabetes. 2001;50:1414–24.

    Article  PubMed  CAS  Google Scholar 

  26. •• From AM, Scott CG, Chen HH. The development of heart failure in patients with diabetes mellitus and preclinical diastolic dysfunction: a population-based study. JACC. 2010;55(4):300–5. This study investigated characteristics of diabetic patients with diastolic dysfunction from 2001–2007. It provides an original detailed analysis of subclinical diastolic dysfunction in this population.

    PubMed  Google Scholar 

  27. Maya L, Villarreal F. Diagnostic approaches for diabetic cardiomyopathy and myocardial fibrosis. J Mol Cell Cardiol. 2010;48(3):524–9.

    Article  PubMed  CAS  Google Scholar 

  28. Fang ZY, Schull-Meade R, Downey M, et al. Determinants of subclinical diabetic heart disease. Diabetologia. 2005;48:394–402.

    Article  PubMed  CAS  Google Scholar 

  29. •• Ernande L, Bergerot C, Rietzchel E, et al. Diastolic dysfunction in patients with type 2 diabetes mellitus: is it really the first marker of diabetic cardiomyopathy? J Am Soc Echocardiogr. 2011;24(11):1268–75. This paper challenged the previously held hypothesis that diastolic dysfunction is the first marker of diabetic cardiomyopathy, and argued that systolic strain alteration may precede diastolic dysfunction.

    Article  PubMed  Google Scholar 

  30. Ng AC, Delgado V, Bertini M, et al. Findings from left ventricular strain and strain rate imaging in asymptomatic patients with type 2 diabetes mellitus. Am J Cardiol. 2009;104:1398–401.

    Article  PubMed  Google Scholar 

  31. Nakai H, Takeuchi M, Nishikage T, et al. Subclinical left ventricular dysfunction in asymptomatic diabetic patients assessed by two-dimensional speckle tracking echocardiography: correlation with diabetic duration. Eur J Echocardiogr. 2009;10:926–32.

    Article  PubMed  Google Scholar 

  32. Boyer JK, Thanigaraj S, Schechtman KB, Perez JE. Prevalence of ventricular diastolic dysfunction in asymptomatic, normotensive diabetic mellitus. Am J Cardiol. 2004;93:870–5.

    Article  PubMed  Google Scholar 

  33. Di Bonito P, Moio N, Cavuto L, et al. Early detection of diabetic cardiomyopathy: usefulness of tissue Doppler imaging. Diabet Med. 2005;22:1720–5.

    Article  PubMed  Google Scholar 

  34. Kim DH, Kim YJ, Kim HK, et al. Usefulness of mitral annulus velocity for the early detection of left ventricular dysfunction in a rat model of diabetic cardiomyopathy. J Cardiovasc Ultrasound. 2010;18(1):6–11.

    Article  PubMed  Google Scholar 

  35. Thrainsdottir I, Maimberg K, Olsson A, et al. Initial experience with GLP-1 treatment on metabolic control and myocardial function in patients with type 2 diabetes mellitus and heart failure. Diab Vasc Dis Res. 2004;1:40–3.

    Article  PubMed  Google Scholar 

  36. Rosen R, Rump AF, Rosen P. The ACE-inhibitor captopril improves myocardial perfusion in spontaneously diabetic (BB) rats. Diabetologia. 1995;38:509–17.

    Article  PubMed  CAS  Google Scholar 

  37. Rijzewijk LJ, van der Meer RW, Lamb HJ, de Jong HW, Lubberink M, Romijn JA, Bax JJ, de Roos A, Twisk JW, Heine RJ, Lammertsma AA, Smit JW, Diamant M. Altered myocardial substrate metabolism and decreased diastolic function in nonischemic human diabetic cardiomyopathy: studies with cardiac positron emission tomography and magnetic resonance imaging. J Am Coll Cardiol. 2009;54(16):1524–32.

    Google Scholar 

  38. Epshteyn V, Morrison K, Krishnaswamy P, et al. Utility of B-type natriuretic peptide (BNP) as a screen for left ventricular dysfunction in patients with diabetes. Diabetes Care. 2003;26:2081–7.

    Article  PubMed  CAS  Google Scholar 

  39. Hunt SA, Abraham WT, Chin MH, Feldman AM, Francis GS, Ganiats TG, Jessup M, Konstam MA, Mancini DM, Michl K, Oates JA, Rahko PS, Silver MA, Stevenson LW, Yancy CW; American College of Cardiology Foundation; American Heart Association. 2009 Focused update incorporated into the ACC/AHA 2005 Guidelines for the Diagnosis and Management of Heart Failure in Adults A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines Developed in Collaboration With the International Society for Heart and Lung Transplantation. J Am Coll Cardiol. 2009;53(15):e1–e90.

    Google Scholar 

  40. •• Romano S, Mauro M, Fratini S, et al. Early diagnosis of left ventricular diastolic dysfunction in diabetic patients: a possible role for natriuretic peptides. Cardiovasc Diabetol. 2010;9:89. This study established BNP as a screening tool for subclinical diabetic cardiomyopathy.

    Article  PubMed  CAS  Google Scholar 

  41. Mogelvang R, Goetze JP, Pedersen SA, et al. Preclinical systolic and diastolic dysfunction assessed by tissue Doppler imaging is associated with elevated plasma pro-B-type natriuretic peptide concentrations. J Card Fail. 2009;15:489–95.

    Article  PubMed  CAS  Google Scholar 

  42. Betti I, Castelli G, Barchielli A, et al. The role of N-terminal PRO-brain natriuretic peptide and echocardiography for screening asymptomatic left ventricular dysfunction in a population at high risk for heart failure. The PROBE-HF study. J Card Fail. 2009;15:377–84.

    Article  PubMed  CAS  Google Scholar 

  43. Ihm S, et al. Serum carboxy-terminal propeptide of type 1 procollagen (PIP) is a marker of diastolic dysfunction in patients with early type 2 diabetes mellitus. Int J Cardiol 2007;e36–8.

  44. Martos R, Baugh J, Ledwidge M, et al. Diastolic heart failure: evidence of increased myocardial collagen turnover linked to diastolic dysfunction. Circulation. 2007;115:888–95.

    Article  PubMed  Google Scholar 

  45. Meier M, Hummel M. Cardiovascular disease and intensive glucose control in type 2 diabetes mellitus: moving practice toward evidence-based strategies. Vasc Health Risk Manag. 2009;5:859–71.

    Article  PubMed  CAS  Google Scholar 

  46. Von Bibra H, Hansen A, Dounis V, et al. Augmented metabolic control improves myocardial diastolic function and perfusion in patients with non-insulin dependent diabetes. Hear Vessel. 1994;9:121–8.

    Article  Google Scholar 

  47. Von Bibra H, Siegmund T, Hansen A, et al. Augmentation of myocardial function by improved glycemic control in patients with type 2 diabetes mellitus. Dtsch Med Wochenschr. 2007;132:729–34.

    Article  Google Scholar 

  48. Bibra H, Siegmund T, Ceriello A, et al. Optimized postprandial glucose control is associated with improved cardiac/vascular function—comparison of three insulin regimens in well-controlled type 2 diabetes. Horm Metab Res. 2009;41(2):109–15.

    Article  PubMed  Google Scholar 

  49. •• Hordern MD, Coombes JS, Cooney LM, et al. Effects of exercise intervention on myocardial function in type 2 diabetes. Heart. 2009;95(16):1343–9. This study failed to find an effect of exercise on diastolic dysfunction in diabetic patients.

    Article  PubMed  CAS  Google Scholar 

  50. Naka KK, Pappas K, Papathanassiuo K, et al. Lack of effects of pioglitazone on cardiac function in patients with type 2 diabetes and evidence of left ventricular diastolic dysfunction: a tissue Doppler imaging study. Cardiovasc Diabetol. 2010;23:9–57.

    Google Scholar 

  51. Hare JL, Horder MD, Leano R, et al. Application of an exercise intervention on the evolution of diastolic dysfunction in patients with diabetes mellitus: efficacy and effectiveness. Circ Heart Fail. 2011;4(4):441–9.

    Article  PubMed  Google Scholar 

  52. •• ADVANCE Echocardiography Substudy Investigators, ADVANCE Collaborative Group. Effects of perinopril-indapamide on left ventricular diastolic function and mass in patients with type 2 diabetes: the ADVANCE Echocardiography Substudy. J Hypertens. 2011;29(7):1439–47. This study failed to find an effect of a combination ACEI/diuretic on diastolic dysfunction among diabetic patients.

    Google Scholar 

  53. Rajesh M, Mukhopadyay P, Batkai S, et al. Cannabidiol attenuates cardiac dysfunction, oxidative stress, fibrosis, and inflammatory and cell death signaling pathways in diabetic cardiomyopathy. J Am Coll Cardiol. 2010;56(25):2115–25.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure

Dr. Maddox is supported by a career development award from the Department of Veterans Affairs Health Services Research and Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas M. Maddox.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tillquist, M.N., Maddox, T.M. Update on Diabetic Cardiomyopathy: Inches Forward, Miles to Go. Curr Diab Rep 12, 305–313 (2012). https://doi.org/10.1007/s11892-012-0274-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11892-012-0274-7

Keywords

Navigation