Skip to main content

Advertisement

Log in

HDL Lipids and Insulin Resistance

  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

There is renewed interest in high-density lipoproteins (HDLs) due to recent findings linking atherosclerosis to the formation of dysfunctional HDL. This article focuses on the universe of HDL lipids and their potential protective or proinflammatory roles in vascular disease and insulin resistance. HDL carries a wide array of lipids including sterols, triglycerides, fat-soluble vitamins, and a large number of phospholipids, including phosphatidylcholine, sphingomyelin, and ceramide with many biological functions. Ceramide has been implicated in the pathogenesis of insulin resistance and has many proinflammatory properties. In contrast, sphingosine-1-phosphate, which is transported mainly in HDL, has anti-inflammatory properties that may be atheroprotective and may account for some of the beneficial effects of HDL. However, the complexity of the HDL lipidome is only beginning to reveal itself. The emergence of new analytical technologies should rapidly increase our understanding of the function of HDL lipids and their role in disease states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as follows: •Of importance ••Of major importance

  1. Miller GJ: HDL and atherosclerosis. Annu Rev Med 1980, 31:97–108.

    Article  CAS  PubMed  Google Scholar 

  2. Garner B, Waldeck AR, Witting PK, et al.: Oxidation of high density lipoproteins. II. Evidence for direct reduction of lipid hydroperoxides by methionine residues of apolipoproteins AI and AII. J Biol Chem 1998, 273:6088–6095.

    Article  CAS  PubMed  Google Scholar 

  3. Barter PJ, Nicholls S, Rye KA, et al.: Antiinflammatory properties of HDL. Circ Res 2004, 95:764–772.

    Article  CAS  PubMed  Google Scholar 

  4. Reddy ST, Devarajan A, Bourquard N, et al.: Is it just paraoxonase 1 or are other members of the paraoxonase gene family implicated in atherosclerosis? Curr Opin Lipidol 2008, 19:405–408.

    Article  CAS  PubMed  Google Scholar 

  5. Stafforini DM: Biology of platelet-activating factor acetylhydrolase (PAF-AH, lipoprotein associated phospholipase A2). Cardiovasc Drugs Ther 2009, 23:73–83.

    Article  CAS  PubMed  Google Scholar 

  6. Vaisar T, Pennathur S, Green PS, et al.: Shotgun proteomics implicates protease inhibition and complement activation in the antiinflammatory properties of HDL. J Clin Invest 2007, 117:746–756.

    Article  CAS  PubMed  Google Scholar 

  7. Hoofnagle AN, Heinecke JW: Lipoproteomics: using mass spectrometry-based proteomics to explore the assembly, structure, and function of lipoproteins. J Lipid Res 2009, 50:1967–1975.

    Article  CAS  PubMed  Google Scholar 

  8. Connelly MA: SR-BI-mediated HDL cholesteryl ester delivery in the adrenal gland. Mol Cell Endocrinol 2009, 300:83–88.

    Article  CAS  PubMed  Google Scholar 

  9. Wiesner P, Leidl K, Boettcher A, et al.: Lipid profiling of FPLC-separated lipoprotein fractions by electrospray ionization tandem mass spectrometry. J Lipid Res 2009, 50:574–585.

    Article  CAS  PubMed  Google Scholar 

  10. Kandutsch AA, Chen HW, Heiniger HJ: Biological activity of some oxygenated sterols. Science 1978, 201:498–501.

    Article  CAS  PubMed  Google Scholar 

  11. Janowski BA, Willy PJ, Devi TR, et al.: An oxysterol signalling pathway mediated by the nuclear receptor LXR alpha. Nature 1996, 383:728–731.

    Article  CAS  PubMed  Google Scholar 

  12. Burkard I, von Eckardstein A, Waeber G, et al.: Lipoprotein distribution and biological variation of 24S- and 27-hydroxycholesterol in healthy volunteers. Atherosclerosis 2007, 194:71–78.

    Article  PubMed  Google Scholar 

  13. Brown AJ, Jessup W: Oxysterols and atherosclerosis. Atherosclerosis 1999, 142:1–28.

    Article  CAS  PubMed  Google Scholar 

  14. Yoshioka N, Adachi J, Ueno Y, Yoshida K: Oxysterols increase in diabetic rats. Free Radic Res 2005, 39:299–304.

    Article  CAS  PubMed  Google Scholar 

  15. Tikkanen MJ, Vihma V, Jauhiainen M, et al.: Lipoprotein-associated estrogens. Cardiovasc Res 2002, 56:184–188.

    Article  CAS  PubMed  Google Scholar 

  16. Gong M, Wilson M, Kelly T, et al.: HDL-associated estradiol stimulates endothelial NO synthase and vasodilation in an SR-BI-dependent manner. J Clin Invest 2003, 111:1579–1587.

    CAS  PubMed  Google Scholar 

  17. Badeau RM, Metso J, Wahala K, et al.: Human macrophage cholesterol efflux potential is enhanced by HDL-associated 17beta-estradiol fatty acyl esters. J Steroid Biochem Mol Biol 2009, 116:44–49.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang W, Asztalos B, Roheim PS, Wong L: Characterization of phospholipids in pre-alpha HDL: selective phospholipid efflux with apolipoprotein A-I. J Lipid Res 1998, 39:1601–1607.

    CAS  PubMed  Google Scholar 

  19. Davidson WS, Gillotte KL, Lund-Katz S, et al.: The effect of high density lipoprotein phospholipid acyl chain composition on the efflux of cellular free cholesterol. J Biol Chem 1995, 270:5882–5890.

    Article  CAS  PubMed  Google Scholar 

  20. Myher JJ, Kuksis A, Breckenridge WC, Little JA: Differential distribution of sphingomyelins among plasma lipoprotein classes. Can J Biochem 1981, 59:626–636.

    Article  CAS  PubMed  Google Scholar 

  21. Kiss RS, McManus DC, Franklin V, et al.: The lipidation by hepatocytes of human apolipoprotein A-I occurs by both ABCA1-dependent and -independent pathways. J Biol Chem 2003, 278:10119–10127.

    Article  CAS  PubMed  Google Scholar 

  22. Jiang XC, Bruce C, Mar J, et al.: Targeted mutation of plasma phospholipid transfer protein gene markedly reduces high-density lipoprotein levels. J Clin Invest 1999, 103:907–914.

    Article  CAS  PubMed  Google Scholar 

  23. Pruzanski W, Stefanski E, de Beer FC, et al.: Comparative analysis of lipid composition of normal and acute-phase high density lipoproteins. J Lipid Res 2000, 41:1035–1047.

    CAS  PubMed  Google Scholar 

  24. Matsumoto T, Kobayashi T, Kamata K: Role of lysophosphatidylcholine (LPC) in atherosclerosis. Curr Med Chem 2007, 14:3209–3220.

    Article  CAS  PubMed  Google Scholar 

  25. Nilsson A, Duan RD: Absorption and lipoprotein transport of sphingomyelin. J Lipid Res 2006, 47:154–171.

    Article  CAS  PubMed  Google Scholar 

  26. Winkler KE, Marsh JB: Characterization of nascent high density lipoprotein subfractions from perfusates of rat liver. J Lipid Res 1989, 30:979–987.

    CAS  PubMed  Google Scholar 

  27. • Kontush A, Therond P, Zerrad A, et al.: Preferential sphingosine-1-phosphate enrichment and sphingomyelin depletion are key features of small dense HDL3 particles: relevance to antiapoptotic and antioxidative activities. Arterioscler Thromb Vasc Biol 2007, 27:1843–1849. This paper presents a careful study investigating the distribution of S1P in HDL subfractions that demonstrated the association of HDL antiapoptotic effects with S1P enrichment and SM depletion in HDL 3 .

  28. Guarino AJ, Lee SP, Wrenn SP: Interactions between sphingomyelin and cholesterol in low density lipoproteins and model membranes. J Colloid Interface Sci 2006, 293:203–212.

    Article  CAS  PubMed  Google Scholar 

  29. Morita SY, Kawabe M, Sakurai A, et al.: Ceramide in lipid particles enhances heparan sulfate proteoglycan and low density lipoprotein receptor-related protein-mediated uptake by macrophages. J Biol Chem 2004, 279:24355–24361.

    Article  CAS  PubMed  Google Scholar 

  30. Morita SY, Nakano M, Sakurai A, et al.: Formation of ceramide-enriched domains in lipid particles enhances the binding of apolipoprotein E. FEBS Lett 2005, 579:1759–1764.

    Article  CAS  PubMed  Google Scholar 

  31. •• Devlin CM, Leventhal AR, Kuriakose G, et al.: Acid sphingomyelinase promotes lipoprotein retention within early atheromata and accelerates lesion progression. Arterioscler Thromb Vasc Biol 2008, 28:1723–1730. In two mouse models of atherosclerosis, the authors demonstrated that genetic deficiency of acid sMase protects from early lipoprotein retention and atherogenesis. The paper provides compelling experimental evidence from an in vivo model to support the proposed role of the enzymatic conversion of SM to ceramide in lipoprotein aggregation and retention, and subsequent atherosclerotic lesion development.

  32. Subbaiah PV, Horvath P, Achar SB: Regulation of the activity and fatty acid specificity of lecithin-cholesterol acyltransferase by sphingomyelin and its metabolites, ceramide and ceramide phosphate. Biochemistry 2006, 45:5029–5038.

    Article  CAS  PubMed  Google Scholar 

  33. Lee CY, Lesimple A, Denis M, et al.: Increased sphingomyelin content impairs HDL biogenesis and maturation in human Niemann-Pick disease type B. J Lipid Res 2006, 47:622–632.

    Article  CAS  PubMed  Google Scholar 

  34. Marmillot P, Munoz J, Patel S, et al.: Long-term ethanol consumption impairs reverse cholesterol transport function of high-density lipoproteins by depleting high-density lipoprotein sphingomyelin both in rats and in humans. Metabolism 2007, 56:947–953.

    Article  CAS  PubMed  Google Scholar 

  35. Yancey PG, de la Llera-Moya M, Swarnakar S, et al.: High density lipoprotein phospholipid composition is a major determinant of the bi-directional flux and net movement of cellular free cholesterol mediated by scavenger receptor BI. J Biol Chem 2000, 275:36596–36604.

    Article  CAS  PubMed  Google Scholar 

  36. Lightle S, Tosheva R, Lee A, et al.: Elevation of ceramide in serum lipoproteins during acute phase response in humans and mice: role of serine-palmitoyl transferase. Arch Biochem Biophys 2003, 419:120–128.

    Article  CAS  PubMed  Google Scholar 

  37. Kuksis A, Myher JJ, Geher K, et al.: Lipid class and molecular species interrelationships among plasma lipoproteins of normolipemic subjects. J Chromatogr 1981, 224:1–23.

    Article  CAS  PubMed  Google Scholar 

  38. Sattler K, Levkau B: Sphingosine-1-phosphate as a mediator of high-density lipoprotein effects in cardiovascular protection. Cardiovasc Res 2009, 82:201–211.

    Article  CAS  PubMed  Google Scholar 

  39. Pappu R, Schwab SR, Cornelissen I, et al.: Promotion of lymphocyte egress into blood and lymph by distinct sources of sphingosine-1-phosphate. Science 2007, 316:295–298.

    Article  CAS  PubMed  Google Scholar 

  40. Dawson G, Kruski AW, Scanu AM: Distribution of glycosphingolipids in the serum lipoproteins of normal human subjects and patients with hypo- and hyperlipidemias. J Lipid Res 1976, 17:125–131.

    CAS  PubMed  Google Scholar 

  41. Senn HJ, Orth M, Fitzke E, et al.: Gangliosides in normal human serum. Concentration, pattern and transport by lipoproteins. Eur J Biochem 1989, 181:657–662.

    Article  CAS  PubMed  Google Scholar 

  42. Breckenridge WC, Palmer FB: Fatty acid composition of human plasma lipoprotein phosphatidylinositols. Biochim Biophys Acta 1982, 712:707–711.

    CAS  PubMed  Google Scholar 

  43. Davidson WS, Sparks DL, Lund-Katz S, Phillips MC: The molecular basis for the difference in charge between pre-beta- and alpha-migrating high density lipoproteins. J Biol Chem 1994, 269:8959–8965.

    CAS  PubMed  Google Scholar 

  44. Boucher JG, Nguyen T, Sparks DL: Lipoprotein electrostatic properties regulate hepatic lipase association and activity. Biochem Cell Biol 2007, 85:696–708.

    Article  CAS  PubMed  Google Scholar 

  45. Bonomo EA, Swaney JB: Effect of phosphatidylethanolamine on the properties of phospholipid-apolipoprotein complexes. Biochemistry 1990, 29:5094–5103.

    Article  CAS  PubMed  Google Scholar 

  46. Thind IS, Sandhu RS: Signification of high density and total cholesterol and triglycerides in acute myocardial infarction–a case-control study. Clin Biochem 1981, 14:57–60.

    Article  CAS  PubMed  Google Scholar 

  47. Sunesen VH, Weber C, Holmer G: Lipophilic antioxidants and polyunsaturated fatty acids in lipoprotein classes: distribution and interaction. Eur J Clin Nutr 2001, 55:115–123.

    Article  CAS  PubMed  Google Scholar 

  48. Behrens WA, Thompson JN, Madere R: Distribution of alpha-tocopherol in human plasma lipoproteins. Am J Clin Nutr 1982, 35:691–696.

    CAS  PubMed  Google Scholar 

  49. Traber MG, Diamond SR, Lane JC, et al.: beta-Carotene transport in human lipoproteins. Comparisons with alpha-tocopherol. Lipids 1994, 29:665–669.

    Article  CAS  PubMed  Google Scholar 

  50. • Sano O, Kobayashi A, Nagao K, et al.: Sphingomyelin-dependence of cholesterol efflux mediated by ABCG1. J Lipid Res 2007, 48:2377–2384. The authors use a multipronged cell biological approach to show that cellular SM concentrations help control the rate of cholesterol efflux by the cell-membrane transporter ABCG1.

  51. Lucic D, Huang ZH, Gu D, et al.: Cellular sphingolipids regulate macrophage apolipoprotein E secretion. Biochemistry 2007, 46:11196–11204.

    Article  CAS  PubMed  Google Scholar 

  52. Witting SR, Maiorano JN, Davidson WS: Ceramide enhances cholesterol efflux to apolipoprotein A-I by increasing the cell surface presence of ATP-binding cassette transporter A1. J Biol Chem 2003, 278:40121–40127.

    Article  CAS  PubMed  Google Scholar 

  53. Li XA, Titlow WB, Jackson BA, et al.: High density lipoprotein binding to scavenger receptor, Class B, type I activates endothelial nitric-oxide synthase in a ceramide-dependent manner. J Biol Chem 2002, 277:11058–11063.

    Article  CAS  PubMed  Google Scholar 

  54. Nofer JR, van der Giet M, Tolle M, et al.: HDL induces NO-dependent vasorelaxation via the lysophospholipid receptor S1P3. J Clin Invest 2004, 113:569–581.

    CAS  PubMed  Google Scholar 

  55. Camino-Lopez S, Badimon L, Gonzalez A, et al.: Aggregated LDL induces tissue factor by inhibiting sphingomyelinase activity in human vascular smooth muscle cells. J Thromb Haemost 2009 Oct 8 (Epub ahead of print).

  56. Boyanovsky B, Karakashian A, King K, et al.: Uptake and metabolism of low density lipoproteins with elevated ceramide content by human microvascular endothelial cells: implications for the regulation of apoptosis. J Biol Chem 2003, 278:26992–26999.

    Article  CAS  PubMed  Google Scholar 

  57. Hundal RS, Gomez-Munoz A, Kong JY, et al.: Oxidized low density lipoprotein inhibits macrophage apoptosis by blocking ceramide generation, thereby maintaining protein kinase B activation and Bcl-XL levels. J Biol Chem 2003, 278:24399–24408.

    Article  CAS  PubMed  Google Scholar 

  58. Loidl A, Claus R, Ingolic E, et al.: Role of ceramide in activation of stress-associated MAP kinases by minimally modified LDL in vascular smooth muscle cells. Biochim Biophys Acta 2004, 1690:150–158.

    CAS  PubMed  Google Scholar 

  59. Daum G, Grabski A, Reidy MA: Sphingosine 1-phosphate: a regulator of arterial lesions. Arterioscler Thromb Vasc Biol 2009, 29:1439–1443.

    Article  CAS  PubMed  Google Scholar 

  60. Navab M, Reddy ST, Van Lenten BJ, et al.: The role of dysfunctional HDL in atherosclerosis. J Lipid Res 2009, 50(Suppl):S145–S149.

    Article  PubMed  CAS  Google Scholar 

  61. Alewijnse AE, Peters SL: Sphingolipid signalling in the cardiovascular system: good, bad or both? Eur J Pharmacol 2008, 585:292–302.

    Article  CAS  PubMed  Google Scholar 

  62. Nofer JR, Bot M, Brodde M, et al.: FTY720, a synthetic sphingosine 1 phosphate analogue, inhibits development of atherosclerosis in low-density lipoprotein receptor-deficient mice. Circulation 2007, 115:501–508.

    Article  CAS  PubMed  Google Scholar 

  63. Keul P, Tolle M, Lucke S, et al.: The sphingosine-1-phosphate analogue FTY720 reduces atherosclerosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 2007, 27:607–613.

    Article  CAS  PubMed  Google Scholar 

  64. Whetzel AM, Bolick DT, Srinivasan S, et al.: Sphingosine-1 phosphate prevents monocyte/endothelial interactions in type 1 diabetic NOD mice through activation of the S1P1 receptor. Circ Res 2006, 99:731–739.

    Article  CAS  PubMed  Google Scholar 

  65. Kimura T, Tomura H, Mogi C, et al.: Sphingosine 1-phosphate receptors mediate stimulatory and inhibitory signalings for expression of adhesion molecules in endothelial cells. Cell Signal 2006, 18:841–850.

    Article  CAS  PubMed  Google Scholar 

  66. Khovidhunkit W, Kim MS, Memon RA, et al.: Effects of infection and inflammation on lipid and lipoprotein metabolism: mechanisms and consequences to the host. J Lipid Res 2004, 45:1169–1196.

    Article  CAS  PubMed  Google Scholar 

  67. Fenkci S, Rota S, Sabir N, et al.: Relationship of serum interleukin-6 and tumor necrosis factor alpha levels with abdominal fat distribution evaluated by ultrasonography in overweight or obese postmenopausal women. J Investig Med 2006, 54:455–460.

    Article  CAS  PubMed  Google Scholar 

  68. •• Kolak M, Westerbacka J, Velagapudi VR, et al.: Adipose tissue inflammation and increased ceramide content characterize subjects with high liver fat content independent of obesity. Diabetes 2007, 56:1960–1968. The authors used state-of-the-art lipidomic techniques to evaluate the adipose tissue lipidome from individuals with hepatic steatosis and insulin resistance. Their finding of increased ceramide levels suggests an important role for this lipid in the pathogenesis of insulin resistance.

  69. Deevska GM, Rozenova KA, Giltiay NV, et al.: Acid sphingomyelinase deficiency prevents diet-induced hepatic triacylglycerol accumulation and hyperglycemia in mice. J Biol Chem 2009, 284:8359–8368.

    Article  CAS  PubMed  Google Scholar 

  70. Summers SA: Ceramides in insulin resistance and lipotoxicity. Prog Lipid Res 2006, 45:42–72.

    Article  CAS  PubMed  Google Scholar 

  71. Yang G, Badeanlou L, Bielawski J, et al.: Central role of ceramide biosynthesis in body weight regulation, energy metabolism, and the metabolic syndrome. Am J Physiol Endocrinol Metab 2009, 297:E211–E224.

    Article  CAS  PubMed  Google Scholar 

  72. Monetti M, Levin MC, Watt MJ, et al.: Dissociation of hepatic steatosis and insulin resistance in mice overexpressing DGAT in the liver. Cell Metab 2007, 6:69–78.

    Article  CAS  PubMed  Google Scholar 

  73. Kotronen A, Seppanen-Laakso T, Westerbacka J, et al.: Comparison of lipid and fatty acid composition of the liver, subcutaneous and intra-abdominal adipose tissue, and serum. Obesity (Silver Spring) 2009 Oct 1 (Epub ahead of print).

  74. Lankinen M, Schwab U, Erkkila A, et al.: Fatty fish intake decreases lipids related to inflammation and insulin signaling–a lipidomics approach. PLoS One 2009, 4:e5258.

    Article  PubMed  CAS  Google Scholar 

  75. • Kendall MR, Hupfeld CJ: FTY720, a sphingosine-1-phosphate receptor modulator, reverses high-fat diet-induced weight gain, insulin resistance and adipose tissue inflammation in C57BL/6 mice. Diabetes Obes Metab 2008, 10:802–805. This brief article raises some interesting new possibilities regarding interaction of S1P with its receptors in improving insulin resistance; this needs to be followed up with more extensive studies.

  76. Tu Z, Argmann C, Wong KK, et al.: Integrating siRNA and protein-protein interaction data to identify an expanded insulin signaling network. Genome Res 2009, 19:1057–1067.

    Article  CAS  PubMed  Google Scholar 

  77. Rapizzi E, Taddei ML, Fiaschi T, et al.: Sphingosine 1-phosphate increases glucose uptake through trans-activation of insulin receptor. Cell Mol Life Sci 2009, 66:3207–3218.

    Article  CAS  PubMed  Google Scholar 

  78. Rutti S, Ehses JA, Sibler RA, et al.: Low- and high-density lipoproteins modulate function, apoptosis, and proliferation of primary human and murine pancreatic beta-cells. Endocrinology 2009, 150:4521–4530.

    Article  CAS  PubMed  Google Scholar 

Download references

Disclosure

Dr. Andrew Hoofnagle was supported by a Pilot and Feasibility Award from the University of Washington Diabetes and Endocrinology Research Center (National Institutes of Health [NIH] P30 DK017047). Dr. Tomas Vaisar was supported by a Scientist Development Grant Award from the American Heart Association (0830231N), and he was also supported by a Pilot and Feasibility Award from the University of Washington Nutrition and Obesity Research Center (NIH 5P30 DK035816), which also provided other support (to Dr. Hoofnagle and to Dr. Alan Chait). No other potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Chait.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoofnagle, A.N., Vaisar, T., Mitra, P. et al. HDL Lipids and Insulin Resistance. Curr Diab Rep 10, 78–86 (2010). https://doi.org/10.1007/s11892-009-0085-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11892-009-0085-7

Keywords

Navigation