Skip to main content

Production and Metabolism of Triglyceride-Rich Lipoproteins: Impact of Diabetes

  • Chapter
  • First Online:
Lipoproteins in Diabetes Mellitus

Part of the book series: Contemporary Diabetes ((CDI))

  • 367 Accesses

Abstract

Very low-density lipoproteins (VLDL) and chylomicrons (CM), produced by the liver and intestine, respectively, are referred to as triglyceride rich-lipoproteins (TGRLs) and present pro-atherogenic characteristics. After lipoprotein secretion, triglycerides are hydrolyzed by lipoprotein lipase; the resulting remnant lipoproteins are enriched in cholesterol and can be taken up by cells.

Insulin plays a key regulatory role in the metabolism of TGRLs; insulin resistance increases plasma levels of VLDL triglycerides and apoB100, increases small dense low-density lipoprotein (LDL) particles, and reduces plasma levels of high-density lipoproteins (HDL).

TGRLs induce vascular dysfunction first by promoting endothelial activation and the expression of adhesion molecules and chemotactic factors involved in the inflammatory process, but also by enhancing lipid deposition within arterial macrophages, thus contributing to the generation of foam cells. These findings support the key role of TGRLs in the early stages of atherogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Karpe F, Bell M, Bjorkegren J, Hamsten A. Quantification of postprandial triglyceride-rich lipoproteins in healthy men by retinyl ester labeling and simultaneous measurement of apolipoproteins B-48 and B-100. Arterioscler Thromb Vasc Biol. 1995;15:199–207.

    Article  CAS  PubMed  Google Scholar 

  2. Taskinen MR. Diabetic dyslipidaemia: from basic research to clinical practice. Diabetologia. 2003;46:733–49.

    Article  PubMed  Google Scholar 

  3. Chen SH, Habib G, Yang CY, et al. Apolipoprotein B-48 is the product of a messenger RNA with an organ-specific in-frame stop codon. Science. 1987;238:363–6.

    Article  CAS  PubMed  Google Scholar 

  4. Powell LM, Wallis SC, Pease RJ, Edwards YH, Knott TJ, Scott J. A novel form of tissue-specific RNA processing produces apolipoprotein-B48 in intestine. Cell. 1987;50:831–40.

    Article  CAS  PubMed  Google Scholar 

  5. Pan X, Hussain MM. Diurnal regulation of microsomal triglyceride transfer protein and plasma lipid levels. J Biol Chem. 2007;282:24707–19.

    Article  CAS  PubMed  Google Scholar 

  6. Benoist F, Grand-Perret T. Co-translational degradation of apolipoprotein B100 by the proteasome is prevented by microsomal triglyceride transfer protein. Synchronized translation studies on HepG2 cells treated with an inhibitor of microsomal triglyceride transfer protein. J Biol Chem. 1997;272:20435–42.

    Article  CAS  PubMed  Google Scholar 

  7. Dixon JL, Furukawa S, Ginsberg HN. Oleate stimulates secretion of apolipoprotein B-containing lipoproteins from Hep G2 cells by inhibiting early intracellular degradation of apolipoprotein B. J Biol Chem. 1991;266:5080–6.

    Article  CAS  PubMed  Google Scholar 

  8. Zhou M, Fisher EA, Ginsberg HN. Regulated co-translational ubiquitination of apolipoprotein B100. A new paradigm for proteasomal degradation of a secretory protein. J Biol Chem. 1998;273:24649–53.

    Article  CAS  PubMed  Google Scholar 

  9. Schumaker VN, Phillips ML, Chatterton JE. Apolipoprotein B and low-density lipoprotein structure: implications for biosynthesis of triglyceride-rich lipoproteins. Adv Protein Chem. 1994;45:205–48.

    Article  CAS  PubMed  Google Scholar 

  10. Gordon DA, Wetterau JR, Gregg RE. Microsomal triglyceride transfer protein: a protein complex required for the assembly of lipoprotein particles. Trends Cell Biol. 1995;5:317–21.

    Article  CAS  PubMed  Google Scholar 

  11. Rustaeus S, Stillemark P, Lindberg K, Gordon D, Olofsson SO. The microsomal triglyceride transfer protein catalyzes the post-translational assembly of apolipoprotein B-100 very low density lipoprotein in McA-RH7777 cells. J Biol Chem. 1998;273:5196–203.

    Article  CAS  PubMed  Google Scholar 

  12. Hussain MM, Shi J, Dreizen P. Microsomal triglyceride transfer protein and its role in apoB-lipoprotein assembly. J Lipid Res. 2003;44:22–32.

    Article  CAS  PubMed  Google Scholar 

  13. Jamil H, Chu CH, Dickson JK Jr, et al. Evidence that microsomal triglyceride transfer protein is limiting in the production of apolipoprotein B-containing lipoproteins in hepatic cells. J Lipid Res. 1998;39:1448–54.

    Article  CAS  PubMed  Google Scholar 

  14. Alexander CA, Hamilton RL, Havel RJ. Subcellular localization of B apoprotein of plasma lipoproteins in rat liver. J Cell Biol. 1976;69:241–63.

    Article  CAS  PubMed  Google Scholar 

  15. Wu X, Shang A, Jiang H, Ginsberg HN. Low rates of apoB secretion from HepG2 cells result from reduced delivery of newly synthesized triglyceride to a “secretion-coupled” pool. J Lipid Res. 1996;37:1198–206.

    Article  CAS  PubMed  Google Scholar 

  16. Gibbons GF, Islam K, Pease RJ. Mobilisation of triacylglycerol stores. Biochim Biophys Acta. 2000;1483:37–57.

    Article  CAS  PubMed  Google Scholar 

  17. Gibbons GF, Bartlett SM, Sparks CE, Sparks JD. Extracellular fatty acids are not utilized directly for the synthesis of very-low-density lipoprotein in primary cultures of rat hepatocytes. Biochem J. 1992;287(Pt 3):749–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pan M, Liang JS, Fisher EA, Ginsberg HN. The late addition of core lipids to nascent apolipoprotein B100, resulting in the assembly and secretion of triglyceride-rich lipoproteins, is independent of both microsomal triglyceride transfer protein activity and new triglyceride synthesis. J Biol Chem. 2002;277:4413–21.

    Article  CAS  PubMed  Google Scholar 

  19. Wiggins D, Gibbons GF. The lipolysis/esterification cycle of hepatic triacylglycerol. Its role in the secretion of very-low-density lipoprotein and its response to hormones and sulphonylureas. Biochem J. 1992;284(Pt 2):457–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Malmstrom R, Packard CJ, Watson TD, et al. Metabolic basis of hypotriglyceridemic effects of insulin in normal men. Arterioscler Thromb Vasc Biol. 1997;17:1454–64.

    Article  CAS  PubMed  Google Scholar 

  21. Packard CJ, Munro A, Lorimer AR, Gotto AM, Shepherd J. Metabolism of apolipoprotein B in large triglyceride-rich very low density lipoproteins of normal and hypertriglyceridemic subjects. J Clin Invest. 1984;74:2178–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gaw A, Packard CJ, Lindsay GM, et al. Overproduction of small very low density lipoproteins (Sf 20-60) in moderate hypercholesterolemia: relationships between apolipoprotein B kinetics and plasma lipoproteins. J Lipid Res. 1995;36:158–71.

    Article  CAS  PubMed  Google Scholar 

  23. Xiao C, Stahel P, Lewis GF. Regulation of chylomicron secretion: focus on post-assembly mechanisms. Cell Mol Gastroenterol Hepatol. 2019;7:487–501.

    Article  PubMed  Google Scholar 

  24. Behbodikhah J, Ahmed S, Elyasi A, et al. Apolipoprotein B and cardiovascular disease: biomarker and potential therapeutic target. Metabolites. 2021;11:690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kohan AB, Wang F, Lo CM, Liu M, Tso P. ApoA-IV: current and emerging roles in intestinal lipid metabolism, glucose homeostasis, and satiety. Am J Physiol Gastrointest Liver Physiol. 2015;308:G472–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Black DD. Development and physiological regulation of intestinal lipid absorption. I. Development of intestinal lipid absorption: cellular events in chylomicron assembly and secretion. Am J Physiol Gastrointest Liver Physiol. 2007;293:G519–24.

    Article  CAS  PubMed  Google Scholar 

  27. Dallinga-Thie GM, Kroon J, Boren J, Chapman MJ. Triglyceride-rich lipoproteins and remnants: targets for therapy? Curr Cardiol Rep. 2016;18:67.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Williams KJ, Chen K. Recent insights into factors affecting remnant lipoprotein uptake. Curr Opin Lipidol. 2010;21:218–28.

    Article  CAS  PubMed  Google Scholar 

  29. Fuki IV, Kuhn KM, Lomazov IR, et al. The syndecan family of proteoglycans. Novel receptors mediating internalization of atherogenic lipoproteins in vitro. J Clin Invest. 1997;100:1611–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mahley RW, Huang Y. Atherogenic remnant lipoproteins: role for proteoglycans in trapping, transferring, and internalizing. J Clin Invest. 2007;117:94–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mahley RW, Ji ZS. Remnant lipoprotein metabolism: key pathways involving cell-surface heparan sulfate proteoglycans and apolipoprotein E. J Lipid Res. 1999;40:1–16.

    Article  CAS  PubMed  Google Scholar 

  32. Mahley RW, Weisgraber KH, Innerarity TL, Rall SC Jr. Genetic defects in lipoprotein metabolism. Elevation of atherogenic lipoproteins caused by impaired catabolism. JAMA. 1991;265:78–83.

    Article  CAS  PubMed  Google Scholar 

  33. Williams KJ, Fuki IV. Cell-surface heparan sulfate proteoglycans: dynamic molecules mediating ligand catabolism. Curr Opin Lipidol. 1997;8:253–62.

    Article  CAS  PubMed  Google Scholar 

  34. Cooper AD. Hepatic uptake of chylomicron remnants. J Lipid Res. 1997;38:2173–92.

    Article  CAS  PubMed  Google Scholar 

  35. Lewis GF, Uffelman KD, Szeto LW, Weller B, Steiner G. Interaction between free fatty acids and insulin in the acute control of very low density lipoprotein production in humans. J Clin Invest. 1995;95:158–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. den Boer MA, Voshol PJ, Kuipers F, Romijn JA, Havekes LM. Hepatic glucose production is more sensitive to insulin-mediated inhibition than hepatic VLDL-triglyceride production. Am J Physiol Endocrinol Metab. 2006;291:E1360–4.

    Article  Google Scholar 

  37. Lewis GF, Steiner G. Acute effects of insulin in the control of VLDL production in humans. Implications for the insulin-resistant state. Diabetes Care. 1996;19:390–3.

    Article  CAS  PubMed  Google Scholar 

  38. Sparks JD, Sparks CE. Insulin regulation of triacylglycerol-rich lipoprotein synthesis and secretion. Biochim Biophys Acta. 1994;1215:9–32.

    Article  CAS  PubMed  Google Scholar 

  39. Malmstrom R, Packard CJ, Caslake M, et al. Effects of insulin and acipimox on VLDL1 and VLDL2 apolipoprotein B production in normal subjects. Diabetes. 1998;47:779–87.

    Article  CAS  PubMed  Google Scholar 

  40. Dashti N, Williams DL, Alaupovic P. Effects of oleate and insulin on the production rates and cellular mRNA concentrations of apolipoproteins in HepG2 cells. J Lipid Res. 1989;30:1365–73.

    Article  CAS  PubMed  Google Scholar 

  41. Sparks CE, Sparks JD, Bolognino M, Salhanick A, Strumph PS, Amatruda JM. Insulin effects on apolipoprotein B lipoprotein synthesis and secretion by primary cultures of rat hepatocytes. Metabolism. 1986;35:1128–36.

    Article  CAS  PubMed  Google Scholar 

  42. Sparks JD, Sparks CE. Insulin modulation of hepatic synthesis and secretion of apolipoprotein B by rat hepatocytes. J Biol Chem. 1990;265:8854–62.

    Article  CAS  PubMed  Google Scholar 

  43. Sparks JD, Sparks CE, Miller LL. Insulin effects on apolipoprotein B production by normal, diabetic and treated-diabetic rat liver and cultured rat hepatocytes. Biochem J. 1989;261:83–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Stein DT, Esser V, Stevenson BE, et al. Essentiality of circulating fatty acids for glucose-stimulated insulin secretion in the fasted rat. J Clin Invest. 1996;97:2728–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sparks JD, Collins HL, Chirieac DV, et al. Hepatic very-low-density lipoprotein and apolipoprotein B production are increased following in vivo induction of betaine-homocysteine S-methyltransferase. Biochem J. 2006;395:363–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sparks JD, Sparks CE, Bolognino M, Roncone AM, Jackson TK, Amatruda JM. Effects of nonketotic streptozotocin diabetes on apolipoprotein B synthesis and secretion by primary cultures of rat hepatocytes. J Clin Invest. 1988;82:37–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kamagate A, Qu S, Perdomo G, et al. FoxO1 mediates insulin-dependent regulation of hepatic VLDL production in mice. J Clin Invest. 2008;118:2347–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Qu S, Su D, Altomonte J, et al. PPAR{alpha} mediates the hypolipidemic action of fibrates by antagonizing FoxO1. Am J Physiol Endocrinol Metab. 2007;292:E421–34.

    Article  CAS  PubMed  Google Scholar 

  49. Matsumoto M, Pocai A, Rossetti L, Depinho RA, Accili D. Impaired regulation of hepatic glucose production in mice lacking the forkhead transcription factor Foxo1 in liver. Cell Metab. 2007;6:208–16.

    Article  CAS  PubMed  Google Scholar 

  50. Horton JD, Goldstein JL, Brown MS. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest. 2002;109:1125–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Schultz JR, Tu H, Luk A, et al. Role of LXRs in control of lipogenesis. Genes Dev. 2000;14:2831–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cha JY, Repa JJ. The liver X receptor (LXR) and hepatic lipogenesis. The carbohydrate-response element-binding protein is a target gene of LXR. J Biol Chem. 2007;282:743–51.

    Article  CAS  PubMed  Google Scholar 

  53. Chen G, Liang G, Ou J, Goldstein JL, Brown MS. Central role for liver X receptor in insulin-mediated activation of Srebp-1c transcription and stimulation of fatty acid synthesis in liver. Proc Natl Acad Sci U S A. 2004;101:11245–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hegarty BD, Bobard A, Hainault I, Ferre P, Bossard P, Foufelle F. Distinct roles of insulin and liver X receptor in the induction and cleavage of sterol regulatory element-binding protein-1c. Proc Natl Acad Sci U S A. 2005;102:791–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Catapano AL, Reiner Z, De Backer G, et al. ESC/EAS guidelines for the management of dyslipidaemias the task force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS). Atherosclerosis. 2011;217:3–46.

    Article  CAS  PubMed  Google Scholar 

  56. Petersen KF, Shulman GI. Etiology of insulin resistance. Am J Med. 2006;119:S10–6.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Reaven GM. Why Syndrome X? From Harold Himsworth to the insulin resistance syndrome. Cell Metab. 2005;1:9–14.

    Article  CAS  PubMed  Google Scholar 

  58. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2007;30(Suppl 1):S42–7.

    Article  Google Scholar 

  59. Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet. 2005;365:1415–28.

    Article  CAS  PubMed  Google Scholar 

  60. Taniguchi CM, Emanuelli B, Kahn CR. Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol. 2006;7:85–96.

    Article  CAS  PubMed  Google Scholar 

  61. DeFronzo RA. Insulin resistance, lipotoxicity, type 2 diabetes and atherosclerosis: the missing links. The Claude Bernard Lecture 2009. Diabetologia. 2010;53:1270–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Morino K, Petersen KF, Shulman GI. Molecular mechanisms of insulin resistance in humans and their potential links with mitochondrial dysfunction. Diabetes. 2006;55(Suppl 2):S9–S15.

    Article  CAS  PubMed  Google Scholar 

  63. Schinner S, Scherbaum WA, Bornstein SR, Barthel A. Molecular mechanisms of insulin resistance. Diab Med. 2005;22:674–82.

    Article  CAS  Google Scholar 

  64. Bartels ED, Lauritsen M, Nielsen LB. Hepatic expression of microsomal triglyceride transfer protein and in vivo secretion of triglyceride-rich lipoproteins are increased in obese diabetic mice. Diabetes. 2002;51:1233–9.

    Article  CAS  PubMed  Google Scholar 

  65. Kuriyama H, Yamashita S, Shimomura I, et al. Enhanced expression of hepatic acyl-coenzyme A synthetase and microsomal triglyceride transfer protein messenger RNAs in the obese and hypertriglyceridemic rat with visceral fat accumulation. Hepatology. 1998;27:557–62.

    Article  CAS  PubMed  Google Scholar 

  66. Taghibiglou C, Carpentier A, Van Iderstine SC, et al. Mechanisms of hepatic very low density lipoprotein overproduction in insulin resistance. Evidence for enhanced lipoprotein assembly, reduced intracellular ApoB degradation, and increased microsomal triglyceride transfer protein in a fructose-fed hamster model. J Biol Chem. 2000;275:8416–25.

    Article  CAS  PubMed  Google Scholar 

  67. Carpentier A, Taghibiglou C, Leung N, et al. Ameliorated hepatic insulin resistance is associated with normalization of microsomal triglyceride transfer protein expression and reduction in very low density lipoprotein assembly and secretion in the fructose-fed hamster. J Biol Chem. 2002;277:28795–802.

    Article  CAS  PubMed  Google Scholar 

  68. Chong T, Naples M, Federico L, et al. Effect of rosuvastatin on hepatic production of apolipoprotein B-containing lipoproteins in an animal model of insulin resistance and metabolic dyslipidemia. Atherosclerosis. 2006;185:21–31.

    Article  CAS  PubMed  Google Scholar 

  69. Chahil TJ, Ginsberg HN. Diabetic dyslipidemia. Endocrinol Metab Clin North Am. 2006;35:491–510. vii-viii

    Article  CAS  PubMed  Google Scholar 

  70. Malmstrom R, Packard CJ, Caslake M, et al. Defective regulation of triglyceride metabolism by insulin in the liver in NIDDM. Diabetologia. 1997;40:454–62.

    Article  CAS  PubMed  Google Scholar 

  71. Lewis GF, Uffelman KD, Szeto LW, Steiner G. Effects of acute hyperinsulinemia on VLDL triglyceride and VLDL apoB production in normal weight and obese individuals. Diabetes. 1993;42:833–42.

    Article  CAS  PubMed  Google Scholar 

  72. Au WS, Kung HF, Lin MC. Regulation of microsomal triglyceride transfer protein gene by insulin in HepG2 cells: roles of MAPKerk and MAPKp38. Diabetes. 2003;52:1073–80.

    Article  CAS  PubMed  Google Scholar 

  73. Brown AM, Gibbons GF. Insulin inhibits the maturation phase of VLDL assembly via a phosphoinositide 3-kinase-mediated event. Arterioscler Thromb Vasc Biol. 2001;21:1656–61.

    Article  CAS  PubMed  Google Scholar 

  74. Bartlett SM, Gibbons GF. Short- and longer-term regulation of very-low-density lipoprotein secretion by insulin, dexamethasone and lipogenic substrates in cultured hepatocytes. A biphasic effect of insulin. Biochem J. 1988;249:37–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Cummings MH, Watts GF, Pal C, et al. Increased hepatic secretion of very-low-density lipoprotein apolipoprotein B-100 in obesity: a stable isotope study. Clin Sci (Lond). 1995;88:225–33.

    Article  CAS  PubMed  Google Scholar 

  76. Gill JM, Brown JC, Bedford D, et al. Hepatic production of VLDL1 but not VLDL2 is related to insulin resistance in normoglycaemic middle-aged subjects. Atherosclerosis. 2004;176:49–56.

    Article  CAS  PubMed  Google Scholar 

  77. Riches FM, Watts GF, Naoumova RP, Kelly JM, Croft KD, Thompson GR. Hepatic secretion of very-low-density lipoprotein apolipoprotein B-100 studied with a stable isotope technique in men with visceral obesity. Int J Obes Relat Metab Disord. 1998;22:414–23.

    Article  CAS  PubMed  Google Scholar 

  78. Sniderman AD, Cianflone K. Substrate delivery as a determinant of hepatic apoB secretion. Arterioscler Thromb. 1993;13:629–36.

    Article  CAS  PubMed  Google Scholar 

  79. Basu A, Basu R, Shah P, Vella A, Rizza RA, Jensen MD. Systemic and regional free fatty acid metabolism in type 2 diabetes. Am J Physiol Endocrinol Metab. 2001;280:E1000–6.

    Article  CAS  PubMed  Google Scholar 

  80. Fabbrini E, Mohammed BS, Magkos F, Korenblat KM, Patterson BW, Klein S. Alterations in adipose tissue and hepatic lipid kinetics in obese men and women with nonalcoholic fatty liver disease. Gastroenterology. 2008;134:424–31.

    Article  CAS  PubMed  Google Scholar 

  81. Jafri H, Alsheikh-Ali AA, Karas RH. Baseline and on-treatment high-density lipoprotein cholesterol and the risk of cancer in randomized controlled trials of lipid-altering therapy. J Am Coll Cardiol. 2010;55:2846–54.

    Article  CAS  PubMed  Google Scholar 

  82. Ginsberg HN, Zhang YL, Hernandez-Ono A. Regulation of plasma triglycerides in insulin resistance and diabetes. Arch Med Res. 2005;36:232–40.

    Article  CAS  PubMed  Google Scholar 

  83. Cohn JS, Patterson BW, Uffelman KD, Davignon J, Steiner G. Rate of production of plasma and very-low-density lipoprotein (VLDL) apolipoprotein C-III is strongly related to the concentration and level of production of VLDL triglyceride in male subjects with different body weights and levels of insulin sensitivity. J Clin Endocrinol Metab. 2004;89:3949–55.

    Article  CAS  PubMed  Google Scholar 

  84. Duez H, Lamarche B, Uffelman KD, Valero R, Cohn JS, Lewis GF. Hyperinsulinemia is associated with increased production rate of intestinal apolipoprotein B-48-containing lipoproteins in humans. Arterioscler Thromb Vasc Biol. 2006;26:1357–63.

    Article  CAS  PubMed  Google Scholar 

  85. Dane-Stewart CA, Watts GF, Barrett PH, et al. Chylomicron remnant metabolism studied with a new breath test in postmenopausal women with and without type 2 diabetes mellitus. Clin Endocrinol (Oxf). 2003;58:415–20.

    Article  CAS  PubMed  Google Scholar 

  86. Georgopoulos A, Phair RD. Abnormal clearance of postprandial Sf 100-400 plasma lipoproteins in insulin-dependent diabetes mellitus. J Lipid Res. 1991;32:1133–41.

    Article  CAS  PubMed  Google Scholar 

  87. Kjellen L, Bielefeld D, Hook M. Reduced sulfation of liver heparan sulfate in experimentally diabetic rats. Diabetes. 1983;32:337–42.

    Article  CAS  PubMed  Google Scholar 

  88. Ebara T, Conde K, Kako Y, et al. Delayed catabolism of apoB-48 lipoproteins due to decreased heparan sulfate proteoglycan production in diabetic mice. J Clin Invest. 2000;105:1807–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Williams KJ, Liu ML, Zhu Y, et al. Loss of heparan N-sulfotransferase in diabetic liver: role of angiotensin II. Diabetes. 2005;54:1116–22.

    Article  CAS  PubMed  Google Scholar 

  90. Anisfeld AM, Kast-Woelbern HR, Meyer ME, et al. Syndecan-1 expression is regulated in an isoform-specific manner by the farnesoid-X receptor. J Biol Chem. 2003;278:20420–8.

    Article  CAS  PubMed  Google Scholar 

  91. Duran-Sandoval D, Mautino G, Martin G, et al. Glucose regulates the expression of the farnesoid X receptor in liver. Diabetes. 2004;53:890–8.

    Article  CAS  PubMed  Google Scholar 

  92. Olsson U, Egnell AC, Lee MR, et al. Changes in matrix proteoglycans induced by insulin and fatty acids in hepatic cells may contribute to dyslipidemia of insulin resistance. Diabetes. 2001;50:2126–32.

    Article  CAS  PubMed  Google Scholar 

  93. Rohrbach DH, Hassell JR, Kleinman HK, Martin GR. Alterations in the basement membrane (heparan sulfate) proteoglycan in diabetic mice. Diabetes. 1982;31:185–8.

    Article  CAS  PubMed  Google Scholar 

  94. Chen K, Liu ML, Schaffer L, et al. Type 2 diabetes in mice induces hepatic overexpression of sulfatase 2, a novel factor that suppresses uptake of remnant lipoproteins. Hepatology. 2010;52:1957–67.

    Article  CAS  PubMed  Google Scholar 

  95. Han S, Liang CP, Westerterp M, et al. Hepatic insulin signaling regulates VLDL secretion and atherogenesis in mice. J Clin Invest. 2009;119:1029–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Niesen M, Bedi M, Lopez D. Diabetes alters LDL receptor and PCSK9 expression in rat liver. Arch Biochem Biophys. 2008;470:111–5.

    Article  CAS  PubMed  Google Scholar 

  97. Boren J, Chapman MJ, Krauss RM, et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J. 2020;41:2313–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Chapman MJ, Orsoni A, Tan R, et al. LDL subclass lipidomics in atherogenic dyslipidemia: effect of statin therapy on bioactive lipids and dense LDL. J Lipid Res. 2020;61:911–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hui N, Barter PJ, Ong KL, Rye KA. Altered HDL metabolism in metabolic disorders: insights into the therapeutic potential of HDL. Clin Sci (Lond). 2019;133:2221–35.

    Article  CAS  PubMed  Google Scholar 

  100. Stahlman M, Fagerberg B, Adiels M, et al. Dyslipidemia, but not hyperglycemia and insulin resistance, is associated with marked alterations in the HDL lipidome in type 2 diabetic subjects in the DIWA cohort: impact on small HDL particles. Biochim Biophys Acta. 2013;1831:1609–17.

    Article  PubMed  Google Scholar 

  101. Kontush A, Chapman MJ. Why is HDL functionally deficient in type 2 diabetes? Curr Diab Rep. 2008;8:51–9.

    Article  CAS  PubMed  Google Scholar 

  102. Steinberg HO, Tarshoby M, Monestel R, et al. Elevated circulating free fatty acid levels impair endothelium-dependent vasodilation. J Clin Invest. 1997;100:1230–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Anderson RA, Evans ML, Ellis GR, et al. The relationships between post-prandial lipaemia, endothelial function and oxidative stress in healthy individuals and patients with type 2 diabetes. Atherosclerosis. 2001;154:475–83.

    Article  CAS  PubMed  Google Scholar 

  104. Ginsberg HN, Packard CJ, Chapman MJ, et al. Triglyceride-rich lipoproteins and their remnants: metabolic insights, role in atherosclerotic cardiovascular disease, and emerging therapeutic strategies-a consensus statement from the European Atherosclerosis Society. Eur Heart J. 2021;42:4791–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Schwartz EA, Reaven PD. Lipolysis of triglyceride-rich lipoproteins, vascular inflammation, and atherosclerosis. Biochim Biophys Acta. 2012;1821:858–66.

    Article  CAS  PubMed  Google Scholar 

  106. Salinas CAA, Chapman MJ. Remnant lipoproteins: are they equal to or more atherogenic than LDL? Curr Opin Lipidol. 2020;31:132–9.

    Article  CAS  PubMed  Google Scholar 

  107. Mendivil CO, Zheng C, Furtado J, Lel J, Sacks FM. Metabolism of very-low-density lipoprotein and low-density lipoprotein containing apolipoprotein C-III and not other small apolipoproteins. Arterioscler Thromb Vasc Biol. 2010;30:239–45.

    Article  CAS  PubMed  Google Scholar 

  108. Lambert DA, Catapano AL, Smith LC, Sparrow JT, Gotto AM Jr. Effect of the apolipoprotein C-II/C-III1 ratio on the capacity of purified milk lipoprotein lipase to hydrolyse triglycerides in monolayer vesicles. Atherosclerosis. 1996;127:205–12.

    Article  CAS  PubMed  Google Scholar 

  109. Catapano AL. The distribution of apo C-II and apo C-III in very low density lipoproteins of normal and type IV subjects. Atherosclerosis. 1980;35:419–24.

    Article  CAS  PubMed  Google Scholar 

  110. Catapano AL. Activation of lipoprotein lipase by apolipoprotein C-II is modulated by the COOH terminal region of apolipoprotein C-III. Chem Phys Lipids. 1987;45:39–47.

    Article  CAS  PubMed  Google Scholar 

  111. Zewinger S, Reiser J, Jankowski V, et al. Apolipoprotein C3 induces inflammation and organ damage by alternative inflammasome activation. Nat Immunol. 2020;21:30–41.

    Article  CAS  PubMed  Google Scholar 

  112. Wyler von Ballmoos MC, Haring B, Sacks FM. The risk of cardiovascular events with increased apolipoprotein CIII: a systematic review and meta-analysis. J Clin Lipidol. 2015;9:498–510.

    Article  PubMed  Google Scholar 

  113. Maggi FM, Raselli S, Grigore L, Redaelli L, Fantappie S, Catapano AL. Lipoprotein remnants and endothelial dysfunction in the postprandial phase. J Clin Endocrinol Metab. 2004;89:2946–50.

    Article  CAS  PubMed  Google Scholar 

  114. Ferreira AC, Peter AA, Mendez AJ, et al. Postprandial hypertriglyceridemia increases circulating levels of endothelial cell microparticles. Circulation. 2004;110:3599–603.

    Article  PubMed  Google Scholar 

  115. Burdge GC, Calder PC. Plasma cytokine response during the postprandial period: a potential causal process in vascular disease? Br J Nutr. 2005;93:3–9.

    Article  CAS  PubMed  Google Scholar 

  116. Lundman P, Eriksson MJ, Silveira A, et al. Relation of hypertriglyceridemia to plasma concentrations of biochemical markers of inflammation and endothelial activation (C-reactive protein, interleukin-6, soluble adhesion molecules, von Willebrand factor, and endothelin-1). Am J Cardiol. 2003;91:1128–31.

    Article  CAS  PubMed  Google Scholar 

  117. Nappo F, Esposito K, Cioffi M, et al. Postprandial endothelial activation in healthy subjects and in type 2 diabetic patients: role of fat and carbohydrate meals. J Am Coll Cardiol. 2002;39:1145–50.

    Article  CAS  PubMed  Google Scholar 

  118. Eiselein L, Wilson DW, Lame MW, Rutledge JC. Lipolysis products from triglyceride-rich lipoproteins increase endothelial permeability, perturb zonula occludens-1 and F-actin, and induce apoptosis. Am J Physiol Heart Circ Physiol. 2007;292:H2745–53.

    Article  CAS  PubMed  Google Scholar 

  119. Dichtl W, Nilsson L, Goncalves I, et al. Very low-density lipoprotein activates nuclear factor-kappaB in endothelial cells. Circ Res. 1999;84:1085–94.

    Article  CAS  PubMed  Google Scholar 

  120. Stiko-Rahm A, Wiman B, Hamsten A, Nilsson J. Secretion of plasminogen activator inhibitor-1 from cultured human umbilical vein endothelial cells is induced by very low density lipoprotein. Arteriosclerosis. 1990;10:1067–73.

    Article  CAS  PubMed  Google Scholar 

  121. Norata GD, Grigore L, Raselli S, et al. Triglyceride-rich lipoproteins from hypertriglyceridemic subjects induce a pro-inflammatory response in the endothelium: molecular mechanisms and gene expression studies. J Mol Cell Cardiol. 2006;40:484–94.

    Article  CAS  PubMed  Google Scholar 

  122. Williams CM, Maitin V, Jackson KG. Triacylglycerol-rich lipoprotein-gene interactions in endothelial cells. Biochem Soc Trans. 2004;32:994–8.

    Article  CAS  PubMed  Google Scholar 

  123. Austin MA, Hokanson JE, Edwards KL. Hypertriglyceridemia as a cardiovascular risk factor. Am J Cardiol. 1998;81:7B–12B.

    Article  CAS  PubMed  Google Scholar 

  124. Do R, Willer CJ, Schmidt EM, et al. Common variants associated with plasma triglycerides and risk for coronary artery disease. Nat Genet. 2013;45:1345–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Varbo A, Benn M, Tybjaerg-Hansen A, Jorgensen AB, Frikke-Schmidt R, Nordestgaard BG. Remnant cholesterol as a causal risk factor for ischemic heart disease. J Am Coll Cardiol. 2013;61:427–36.

    Article  CAS  PubMed  Google Scholar 

  126. Zhao Y, Liu L, Yang S, et al. Mechanisms of atherosclerosis induced by postprandial lipemia. Front Cardiovas Med. 2021;8:636947.

    Article  CAS  Google Scholar 

  127. Norata GD, Grigore L, Raselli S, et al. Post-prandial endothelial dysfunction in hypertriglyceridemic subjects: molecular mechanisms and gene expression studies. Atherosclerosis. 2007;193:321–7.

    Article  CAS  PubMed  Google Scholar 

  128. Mamo JC, Wheeler JR. Chylomicrons or their remnants penetrate rabbit thoracic aorta as efficiently as do smaller macromolecules, including low-density lipoprotein, high-density lipoprotein, and albumin. Coron Artery Dis. 1994;5:695–705.

    Article  CAS  PubMed  Google Scholar 

  129. Proctor SD, Mamo JC. Retention of fluorescent-labelled chylomicron remnants within the intima of the arterial wall—evidence that plaque cholesterol may be derived from post-prandial lipoproteins. Eur J Clin Invest. 1998;28:497–503.

    Article  CAS  PubMed  Google Scholar 

  130. Rapp JH, Lespine A, Hamilton RL, et al. Triglyceride-rich lipoproteins isolated by selected-affinity anti-apolipoprotein B immunosorption from human atherosclerotic plaque. Arterioscler Thromb. 1994;14:1767–74.

    Article  CAS  PubMed  Google Scholar 

  131. Sattar N, Petrie JR, Jaap AJ. The atherogenic lipoprotein phenotype and vascular endothelial dysfunction. Atherosclerosis. 1998;138:229–35.

    Article  CAS  PubMed  Google Scholar 

  132. Carantoni M, Abbasi F, Chu L, et al. Adherence of mononuclear cells to endothelium in vitro is increased in patients with NIDDM. Diabetes Care. 1997;20:1462–5.

    Article  CAS  PubMed  Google Scholar 

  133. Bates SR, Murphy PL, Feng ZC, Kanazawa T, Getz GS. Very low density lipoproteins promote triglyceride accumulation in macrophages. Arteriosclerosis. 1984;4:103–14.

    Article  CAS  PubMed  Google Scholar 

  134. Saito M, Eto M, Okada M, Iwashima Y, Makino I. Remnant-like particles (RLP) from NIDDM patients with apolipoprotein E3/3 phenotype stimulate cholesteryl ester synthesis in human monocyte-derived macrophages. Artery. 1996;22:155–63.

    CAS  PubMed  Google Scholar 

  135. Fujioka Y, Cooper AD, Fong LG. Multiple processes are involved in the uptake of chylomicron remnants by mouse peritoneal macrophages. J Lipid Res. 1998;39:2339–49.

    Article  CAS  PubMed  Google Scholar 

  136. Cavallero E, Brites F, Delfly B, et al. Abnormal reverse cholesterol transport in controlled type II diabetic patients. Studies on fasting and postprandial LpA-I particles. Arterioscler Thromb Vasc Biol. 1995;15:2130–5.

    Article  CAS  PubMed  Google Scholar 

  137. Syvanne M, Castro G, Dengremont C, et al. Cholesterol efflux from Fu5AH hepatoma cells induced by plasma of subjects with or without coronary artery disease and non-insulin-dependent diabetes: importance of LpA-I:A-II particles and phospholipid transfer protein. Atherosclerosis. 1996;127:245–53.

    Article  CAS  PubMed  Google Scholar 

  138. Palmer AM, Murphy N, Graham A. Triglyceride-rich lipoproteins inhibit cholesterol efflux to apolipoprotein (apo) A1 from human macrophage foam cells. Atherosclerosis. 2004;173:27–38.

    Article  CAS  PubMed  Google Scholar 

  139. Kawakami A, Tanaka A, Nakano T, Saniabadi A, Numano F. Stimulation of arterial smooth muscle cell proliferation by remnant lipoprotein particles isolated by immuno-affinity chromatography with anti-apo A-I and anti-apo B-100. Horm Metab Res. 2001;33:67–72.

    Article  CAS  PubMed  Google Scholar 

  140. Kawakami A, Tanaka A, Chiba T, Nakajima K, Shimokado K, Yoshida M. Remnant lipoprotein-induced smooth muscle cell proliferation involves epidermal growth factor receptor transactivation. Circulation. 2003;108:2679–88.

    Article  CAS  PubMed  Google Scholar 

  141. Ooi EM, Barrett PH, Chan DC, Watts GF. Apolipoprotein C-III: understanding an emerging cardiovascular risk factor. Clin Sci (Lond). 2008;114:611–24.

    Article  CAS  PubMed  Google Scholar 

  142. Norata GD, Tsimikas S, Pirillo A, Catapano AL. Apolipoprotein C-III: from pathophysiology to pharmacology. Trends Pharmacol Sci. 2015;36:675–87.

    Article  CAS  PubMed  Google Scholar 

  143. Boren J, Packard CJ, Taskinen MR. The roles of ApoC-III on the metabolism of triglyceride-rich lipoproteins in humans. Front Endocrinol (Lausanne). 2020;11:474.

    Article  PubMed  Google Scholar 

  144. Ramms B, Patel S, Nora C, et al. ApoC-III ASO promotes tissue LPL activity in the absence of apoE-mediated TRL clearance. J Lipid Res. 2019;60:1379–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Gaudet D, Brisson D, Tremblay K, et al. Targeting APOC3 in the familial chylomicronemia syndrome. N Engl J Med. 2014;371:2200–6.

    Article  PubMed  Google Scholar 

  146. Crosby J, Peloso GM, Auer PL, et al. Loss-of-function mutations in APOC3, triglycerides, and coronary disease. N Engl J Med. 2014;371:22–31.

    Article  PubMed  Google Scholar 

  147. Jorgensen AB, Frikke-Schmidt R, Nordestgaard BG, Tybjaerg-Hansen A. Loss-of-function mutations in APOC3 and risk of ischemic vascular disease. N Engl J Med. 2014;371:32–41.

    Article  PubMed  Google Scholar 

  148. Wulff AB, Nordestgaard BG, Tybjaerg-Hansen A. APOC3 loss-of-function mutations, remnant cholesterol, low-density lipoprotein cholesterol, and cardiovascular risk: mediation- and meta-analyses of 137 895 individuals. Arterioscler Thromb Vasc Biol. 2018;38:660–8.

    Article  CAS  PubMed  Google Scholar 

  149. Sandesara PB, Virani SS, Fazio S, Shapiro MD. The forgotten lipids: triglycerides, remnant cholesterol, and atherosclerotic cardiovascular disease risk. Endocr Rev. 2019;40:537–57.

    Article  PubMed  Google Scholar 

  150. Adiels M, Taskinen MR, Bjornson E, et al. Role of apolipoprotein C-III overproduction in diabetic dyslipidaemia. Diabetes Obes Metab. 2019;21:1861–70.

    Article  CAS  PubMed  Google Scholar 

  151. Zhang J, Rocha NA, McCullough PA. Contribution of ApoCIII to diabetic dyslipidemia and treatment with volanesorsen. Rev Cardiovasc Med. 2018;19:13–9.

    Article  PubMed  Google Scholar 

  152. Faghihnia N, Mangravite LM, Chiu S, Bergeron N, Krauss RM. Effects of dietary saturated fat on LDL subclasses and apolipoprotein CIII in men. Eur J Clin Nutr. 2012;66:1229–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Sahebkar A, Simental-Mendia LE, Mikhailidis DP, et al. Effect of omega-3 supplements on plasma apolipoprotein C-III concentrations: a systematic review and meta-analysis of randomized controlled trials. Ann Med. 2018;50:565–75.

    Article  CAS  PubMed  Google Scholar 

  154. Tikka A, Jauhiainen M. The role of ANGPTL3 in controlling lipoprotein metabolism. Endocrine. 2016;52:187–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Musunuru K, Pirruccello JP, Do R, et al. Exome sequencing, ANGPTL3 mutations, and familial combined hypolipidemia. N Engl J Med. 2010;363:2220–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Stitziel NO, Khera AV, Wang X, et al. ANGPTL3 deficiency and protection against coronary artery disease. J Am Coll Cardiol. 2017;69:2054–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Inukai K, Nakashima Y, Watanabe M, et al. ANGPTL3 is increased in both insulin-deficient and -resistant diabetic states. Biochem Biophys Res Commun. 2004;317:1075–9.

    Article  CAS  PubMed  Google Scholar 

  158. Abu-Farha M, Al-Khairi I, Cherian P, et al. Increased ANGPTL3, 4 and ANGPTL8/betatrophin expression levels in obesity and T2D. Lipids Health Dis. 2016;15:181.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Robciuc MR, Maranghi M, Lahikainen A, et al. Angptl3 deficiency is associated with increased insulin sensitivity, lipoprotein lipase activity, and decreased serum free fatty acids. Arterioscler Thromb Vasc Biol. 2013;33:1706–13.

    Article  CAS  PubMed  Google Scholar 

  160. Christopoulou E, Elisaf M, Filippatos T. Effects of angiopoietin-like 3 on triglyceride regulation, glucose homeostasis, and diabetes. Dis Markers. 2019;2019:6578327.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Yang LY, Yu CG, Wang XH, et al. Angiopoietin-like protein 4 is a high-density lipoprotein (HDL) component for HDL metabolism and function in nondiabetic participants and type-2 diabetic patients. J Am Heart Assoc. 2017;6:e005973.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Barja-Fernandez S, Moreno-Navarrete JM, Folgueira C, et al. Plasma ANGPTL-4 is associated with obesity and glucose tolerance: cross-sectional and longitudinal findings. Mol Nutr Food Res. 2018;62:e1800060.

    Article  PubMed  Google Scholar 

  163. Gaudet D, Karwatowska-Prokopczuk E, Baum SJ, et al. Vupanorsen, an N-acetyl galactosamine-conjugated antisense drug to ANGPTL3 mRNA, lowers triglycerides and atherogenic lipoproteins in patients with diabetes, hepatic steatosis, and hypertriglyceridaemia. Eur Heart J. 2020;41:3936–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Wang Y, Gusarova V, Banfi S, Gromada J, Cohen JC, Hobbs HH. Inactivation of ANGPTL3 reduces hepatic VLDL-triglyceride secretion. J Lipid Res. 2015;56:1296–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Adam RC, Mintah IJ, Alexa-Braun CA, et al. Angiopoietin-like protein 3 governs LDL-cholesterol levels through endothelial lipase-dependent VLDL clearance. J Lipid Res. 2020;61:1271–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Gaudet D, Gipe DA, Pordy R, et al. ANGPTL3 inhibition in homozygous familial hypercholesterolemia. N Engl J Med. 2017;377:296–7.

    Article  PubMed  Google Scholar 

  167. Raal FJ, Rosenson RS, Reeskamp LF, et al. Evinacumab for homozygous familial hypercholesterolemia. N Engl J Med. 2020;383:711–20.

    Article  CAS  PubMed  Google Scholar 

  168. Mach F, Baigent C, Catapano AL, et al. 2019 ESC/EAS guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J. 2020;41:111–88.

    Article  PubMed  Google Scholar 

  169. Vallejo-Vaz AJ, Fayyad R, Boekholdt SM, et al. Triglyceride-rich lipoprotein cholesterol and risk of cardiovascular events among patients receiving statin therapy in the TNT trial. Circulation. 2018;138:770–81.

    Article  CAS  PubMed  Google Scholar 

  170. Ahmad Z, Banerjee P, Hamon S, et al. Inhibition of angiopoietin-like protein 3 with a monoclonal antibody reduces triglycerides in hypertriglyceridemia. Circulation. 2019;140:470–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Ahmad Z, Pordy R, Rader DJ, et al. Inhibition of angiopoietin-like protein 3 with evinacumab in subjects with high and severe hypertriglyceridemia. J Am Coll Cardiol. 2021;78:193–5.

    Article  CAS  PubMed  Google Scholar 

  172. Yang X, Lee SR, Choi YS, et al. Reduction in lipoprotein-associated apoC-III levels following volanesorsen therapy: phase 2 randomized trial results. J Lipid Res. 2016;57:706–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Digenio A, Dunbar RL, Alexander VJ, et al. Antisense-mediated lowering of plasma apolipoprotein C-III by volanesorsen improves dyslipidemia and insulin sensitivity in type 2 diabetes. Diabetes Care. 2016;39:1408–15.

    Article  CAS  PubMed  Google Scholar 

  174. Alexander VJ, Xia S, Hurh E, et al. N-acetyl galactosamine-conjugated antisense drug to APOC3 mRNA, triglycerides and atherogenic lipoprotein levels. Eur Heart J. 2019;40:2785–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Tardif JC, Karwatowska-Prokopczuk E, Amour ES, et al. Apolipoprotein C-III reduction in subjects with moderate hypertriglyceridaemia and at high cardiovascular risk. Eur Heart J. 2022;43:1401–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Bhatt DL, Steg PG, Miller M, et al. Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia. N Engl J Med. 2019;380:11–22.

    Article  CAS  PubMed  Google Scholar 

  177. Ballantyne CM, Bays HE, Kastelein JJ, et al. Efficacy and safety of eicosapentaenoic acid ethyl ester (AMR101) therapy in statin-treated patients with persistent high triglycerides (from the ANCHOR study). Am J Cardiol. 2012;110:984–92.

    Article  CAS  PubMed  Google Scholar 

  178. Ballantyne CM, Bays HE, Philip S, et al. Icosapent ethyl (eicosapentaenoic acid ethyl ester): effects on remnant-like particle cholesterol from the MARINE and ANCHOR studies. Atherosclerosis. 2016;253:81–7.

    Article  CAS  PubMed  Google Scholar 

  179. Sabatine MS, Giugliano RP, Keech AC, et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med. 2017;376:1713–22.

    Article  CAS  PubMed  Google Scholar 

  180. Schwartz GG, Steg PG, Szarek M, et al. Alirocumab and cardiovascular outcomes after acute coronary syndrome. N Engl J Med. 2018;379:2097–107.

    Article  CAS  PubMed  Google Scholar 

  181. Hollstein T, Vogt A, Grenkowitz T, et al. Treatment with PCSK9 inhibitors reduces atherogenic VLDL remnants in a real-world study. Vasc Pharmacol. 2019;116:8–15.

    Article  CAS  Google Scholar 

  182. Koren MJ, Kereiakes D, Pourfarzib R, et al. Effect of PCSK9 inhibition by alirocumab on lipoprotein particle concentrations determined by nuclear magnetic resonance spectroscopy. J Am Heart Assoc. 2015;4:e002224.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Toth PP, Sattar N, Blom DJ, et al. Effect of evolocumab on lipoprotein particles. Am J Cardiol. 2018;121:308–14.

    Article  CAS  PubMed  Google Scholar 

  184. Taskinen MR, Bjornson E, Andersson L, et al. Impact of proprotein convertase subtilisin/kexin type 9 inhibition with evolocumab on the postprandial responses of triglyceride-rich lipoproteins in type II diabetic subjects. J Clin Lipidol. 2020;14:77–87.

    Article  PubMed  Google Scholar 

  185. Lorenzatti AJ, Monsalvo ML, Lopez JAG, Wang H, Rosenson RS. Effects of evolocumab in individuals with type 2 diabetes with and without atherogenic dyslipidemia: an analysis from BANTING and BERSON. Cardiovasc Diabetol. 2021;20:94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberico L. Catapano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pirillo, A., Norata, G.D., Catapano, A.L. (2023). Production and Metabolism of Triglyceride-Rich Lipoproteins: Impact of Diabetes. In: Jenkins, A.J., Toth, P.P. (eds) Lipoproteins in Diabetes Mellitus. Contemporary Diabetes. Humana, Cham. https://doi.org/10.1007/978-3-031-26681-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26681-2_7

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-031-26680-5

  • Online ISBN: 978-3-031-26681-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics