Skip to main content

Advertisement

Log in

FDG PET Imaging and Cardiovascular Inflammation

  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

The underlying pathologic mechanism of most acute coronary syndromes is atherosclerotic plaque rupture. One cause of rupture is plaque inflammation, leading to fibrous cap destabilization. Several imaging techniques, including x-ray coronary angiography and multislice CT, can be used for the detection of coronary atherosclerosis. However, these anatomical methods cannot measure arterial inflammation. Positron emission tomography imaging of atherosclerosis using the metabolic marker fluorodeoxyglucose allows quantification of arterial inflammation across multiple vessels. This review discusses the rationale, utility, potential future applications, and limitations of this emerging biomarker of cardiovascular risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Rosamond W, Flegal K, Friday G, et al.: Heart disease and stroke statistics—2007 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 2007, 115:e69–e171.

    Article  PubMed  Google Scholar 

  2. Shaw LJ, Narula J: Risk assessment and predictive value of coronary artery disease testing. J Nucl Med 2009, 50:1296–1306.

    Article  PubMed  Google Scholar 

  3. Davies MJ: Stability and instability: two faces of coronary atherosclerosis. The Paul Dudley White Lecture 1995. Circulation 1996, 94:2013–2020.

    CAS  PubMed  Google Scholar 

  4. Narula J, Garg P, Achenbach S, et al.: Arithmetic of vulnerable plaques for noninvasive imaging. Nat Clin Pract Cardiovasc Med 2008, 5(Suppl 2):S2–S10.

    Article  PubMed  Google Scholar 

  5. Libby P: Inflammation in atherosclerosis. Nature 2002, 420:868–874.

    Article  CAS  PubMed  Google Scholar 

  6. Shah PK: Screening asymptomatic subjects for subclinical atherosclerosis: can we, does it matter, and should we? J Am Coll Cardiol 2010, 56:98–105.

    Article  PubMed  Google Scholar 

  7. Shankar LK, Hoffman JM, Bacharach S, et al.: Consensus recommendations for the use of 18F-FDG PET as an indicator of therapeutic response in patients in National Cancer Institute Trials. J Nucl Med 2006, 47:1059–1066.

    CAS  PubMed  Google Scholar 

  8. Rudd JH, Warburton EA, Fryer TD, et al.: Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation 2002, 105:2708–2711.

    Article  CAS  PubMed  Google Scholar 

  9. Newby DE: Triggering of acute myocardial infarction: beyond the vulnerable plaque. Heart 2010, 96:1247–1251.

    Article  PubMed  Google Scholar 

  10. Virmani R, Kolodgie FD, Burke AP, et al.: Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 2000, 20:1262–1275.

    CAS  PubMed  Google Scholar 

  11. Kolodgie FD, Burke AP, Farb A, et al.: The thin-cap fibroatheroma: a type of vulnerable plaque: the major precursor lesion to acute coronary syndromes. Curr Opin Cardiol 2001, 16:285–292.

    Article  CAS  PubMed  Google Scholar 

  12. Burke AP, Farb A, Malcom GT, et al.: Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N Engl J Med 1997, 336:1276–1282.

    Article  CAS  PubMed  Google Scholar 

  13. Weisdorf DJ, Craddock PR, Jacob HS: Granulocytes utilize different energy sources for movement and phagocytosis. Inflammation 1982, 6:245–256.

    Article  CAS  PubMed  Google Scholar 

  14. Bjornheden T, Levin M, Evaldsson M, Wiklund O: Evidence of hypoxic areas within the arterial wall in vivo. Arterioscler Thromb Vasc Biol 1999, 19:870–876.

    CAS  PubMed  Google Scholar 

  15. Sluimer JC, Daemen MJ: Novel concepts in atherogenesis: angiogenesis and hypoxia in atherosclerosis. J Pathol 2009, 218:7–29.

    Article  PubMed  Google Scholar 

  16. Strauss HW, Dunphy M, Tokita N: Imaging the vulnerable plaque: a scintillating light at the end of the tunnel? J Nucl Med 2004, 45:1106–1107.

    CAS  PubMed  Google Scholar 

  17. Newsholme P, Curi R, Gordon S, Newsholme EA: Metabolism of glucose, glutamine, long-chain fatty acids and ketone bodies by murine macrophages. Biochem J 1986, 239:121–125.

    CAS  PubMed  Google Scholar 

  18. Fu Y, Maianu L, Melbert BR, Garvey WT: Facilitative glucose transporter gene expression in human lymphocytes, monocytes, and macrophages: a role for GLUT isoforms 1, 3, and 5 in the immune response and foam cell formation. Blood Cells Mol Dis 2004, 32:182–190.

    Article  CAS  PubMed  Google Scholar 

  19. Tawakol A, Migrino RQ, Bashian GG, et al.: In vivo 18F-fluorodeoxyglucose positron emission tomography imaging provides a noninvasive measure of carotid plaque inflammation in patients. J Am Coll Cardiol 2006, 48:1818–1824.

    Article  PubMed  Google Scholar 

  20. Rudd JH, Fayad ZA: Imaging atherosclerotic plaque inflammation. Nat Clin Pract Cardiovasc Med 2008, 5(Suppl 2):S11–S17.

    Article  PubMed  Google Scholar 

  21. Rudd JH, Hyafil F, Fayad ZA: Inflammation imaging in atherosclerosis. Arterioscler Thromb Vasc Biol 2009, 29:1009–1016.

    Article  CAS  PubMed  Google Scholar 

  22. Coulson JM, Rudd JH, Duckers JM, et al.: Excessive aortic inflammation in chronic obstructive pulmonary disease: an 18F-FDG PET pilot study. J Nucl Med 2010, 51:1357–1360.

    Article  PubMed  Google Scholar 

  23. Davies JR, Izquierdo-Garcia D, Rudd JH, et al.: FDG-PET can distinguish inflamed from non-inflamed plaque in an animal model of atherosclerosis. Int J Cardiovasc Imaging 2010, 26:41–48.

    Article  PubMed  Google Scholar 

  24. Elkhawad M, Rudd JH: Radiotracer imaging of atherosclerotic plaque biology. Cardiol Clin 2009, 27:345–354. Table of Contents.

    Article  PubMed  Google Scholar 

  25. Laitinen I, Marjamäki P, Haaparanta M, et al.: Non-specific binding of [18F]FDG to calcifications in atherosclerotic plaques: experimental study of mouse and human arteries. EurJ Nucl Med 2006, 33:1461–1467.

    Article  CAS  Google Scholar 

  26. Ogawa M, Ishino S, Mukai T, et al.: (18)F-FDG accumulation in atherosclerotic plaques: immunohistochemical and PET imaging study. J Nucl Med 2004, 45:1245–1250.

    CAS  PubMed  Google Scholar 

  27. Tawakol A, Migrino RQ, Hoffmann U, et al.: Noninvasive in vivo measurement of vascular inflammation with F-18 fluorodeoxyglucose positron emission tomography. J Nucl Cardiol 2005, 12:294–301.

    Article  PubMed  Google Scholar 

  28. Laurberg JM, Olsen AK, Hansen SB, et al.: Imaging of vulnerable atherosclerotic plaques with FDG-microPET: no FDG accumulation. Atherosclerosis 2007, 192:275–282.

    Article  CAS  PubMed  Google Scholar 

  29. Rudd JH, Fayad ZA, Machac J, et al.: Response to ‘Laurberg JM, Olsen AK, Hansen SB, et al. Imaging of vulnerable atherosclerotic plaques with FDG-microPET: no FDG accumulation’ [Atherosclerosis 2006]. Atherosclerosis 2007, 192:453–454; author reply 451–452

    Article  CAS  PubMed  Google Scholar 

  30. Maschauer S, Prante O, Hoffmann M, et al.: Characterization of 18F-FDG uptake in human endothelial cells in vitro. J Nucl Med 2004, 45:455–460.

    CAS  PubMed  Google Scholar 

  31. Paik JY, Ko BH, Jung KH, Lee KH: Fibronectin stimulates endothelial cell 18F-FDG uptake through focal adhesion kinase-mediated phosphatidylinositol 3-kinase/Akt signaling. J Nucl Med 2009, 50:618–624.

    Article  CAS  PubMed  Google Scholar 

  32. Ishimori T, Saga T, Mamede M, et al.: Increased (18)F-FDG uptake in a model of inflammation: concanavalin A-mediated lymphocyte activation. J Nucl Med 2002, 43:658–663.

    CAS  PubMed  Google Scholar 

  33. Davies JR, Rudd JH, Fryer TD, et al.: Identification of culprit lesions after transient ischemic attack by combined 18F fluorodeoxyglucose positron-emission tomography and high-resolution magnetic resonance imaging. Stroke 2005, 36:2642–2647.

    Article  PubMed  Google Scholar 

  34. Dunphy MP, Freiman A, Larson SM, Strauss HW: Association of vascular 18F-FDG uptake with vascular calcification. J Nucl Med 2005, 46:1278–1284.

    PubMed  Google Scholar 

  35. Rudd JH, Myers KS, Bansilal S, et al.: Atherosclerosis inflammation imaging with 18F-FDG PET: carotid, iliac, and femoral uptake reproducibility, quantification methods, and recommendations. J Nucl Med 2008, 49:871–878.

    Article  PubMed  Google Scholar 

  36. Basu S, Zhuang H, Alavi A: Imaging of lower extremity artery atherosclerosis in diabetic foot: FDG-PET imaging and histopathological correlates. Clin Nucl Med 2007, 32:567–568.

    Article  PubMed  Google Scholar 

  37. • Rogers IS, Nasir K, Figueroa AL, et al.: Feasibility of FDG imaging of the coronary arteries: comparison between acute coronary syndrome and stable angina. JACC Cardiovascular Imaging 2010, 3:388–397. This study showed that coronary artery FDG uptake was linked with aortic FDG uptake, perhaps negating the need for coronary artery FDG imaging.

    Article  PubMed  Google Scholar 

  38. Wykrzykowska J, Lehman S, Williams G, et al.: Imaging of inflamed and vulnerable plaque in coronary arteries with 18F-FDG PET/CT in patients with suppression of myocardial uptake using a low-carbohydrate, high-fat preparation. J Nucl Med 2009, 50:563–568.

    Article  PubMed  Google Scholar 

  39. Kim TN, Kim S, Yang SJ, et al.: Vascular inflammation in patients with impaired glucose tolerance and type 2 diabetes: analysis with 18F-fluorodeoxyglucose positron emission tomography. Circ Cardiovasc Imaging 2010, 3:142–148.

    Article  PubMed  Google Scholar 

  40. Tahara N, Kai H, Yamagishi S, et al.: Vascular inflammation evaluated by [18F]-fluorodeoxyglucose positron emission tomography is associated with the metabolic syndrome. J Am Coll Cardiol 2007, 49:1533–1539.

    Article  CAS  PubMed  Google Scholar 

  41. Kwee RM, Teule GJJ, van Oostenbrugge RJ, et al.: Multimodality imaging of carotid artery plaques: 18F-fluoro-2-deoxyglucose positron emission tomography, computed tomography, and magnetic resonance imaging. Stroke 2009, 40:3718–3724.

    Article  PubMed  Google Scholar 

  42. Silvera SS, Aidi HE, Rudd JH, et al.: Multimodality imaging of atherosclerotic plaque activity and composition using FDG-PET/CT and MRI in carotid and femoral arteries. Atherosclerosis 2009, 207:139–143.

    Article  CAS  PubMed  Google Scholar 

  43. Hyafil F, Cornily J, Rudd JH, et al.: Quantification of inflammation within rabbit atherosclerotic plaques using the macrophage-specific CT contrast agent N1177: a comparison with 18F-FDG PET/CT and histology. J Nucl Med 2009, 50:959–965.

    Article  CAS  PubMed  Google Scholar 

  44. Moustafa RR, Izquierdo-Garcia D, Fryer TD, et al.: Carotid plaque inflammation is associated with cerebral microembolism in patients with recent transient ischemic attack or stroke: a pilot study. Circ Cardiovasc Imaging 2010, 3:536–541.

    Article  PubMed  Google Scholar 

  45. Pedersen SF, Graebe M, Fisker Hag AM, et al.: Gene expression and 18FDG uptake in atherosclerotic carotid plaques. Nucl Med Commun 2010, 31:423–429.

    CAS  PubMed  Google Scholar 

  46. Wu YW, Kao HL, Chen MF, et al.: Characterization of plaques using 18F-FDG PET/CT in patients with carotid atherosclerosis and correlation with matrix metalloproteinase-1. J Nucl Med 2007, 48:227–233.

    CAS  PubMed  Google Scholar 

  47. Rudd JH, Myers KS, Bansilal S, et al.: Relationships among regional arterial inflammation, calcification, risk factors, and biomarkers: a prospective fluorodeoxyglucose positron-emission tomography/computed tomography imaging study. Circ Cardiovasc Imaging 2009, 2:107–115.

    Article  PubMed  Google Scholar 

  48. • Paulmier B, Duet M, Khayat R, et al.: Arterial wall uptake of fluorodeoxyglucose on PET imaging in stable cancer disease patients indicates higher risk for cardiovascular events. J Nucl Cardiol 2008, 15:209–217. This is the first study to demonstrate a link between arterial FDG uptake and future cardiovascular events.

    Article  PubMed  Google Scholar 

  49. Rominger A, Saam T, Wolpers S, et al.: 18F-FDG PET/CT identifies patients at risk for future vascular events in an otherwise asymptomatic cohort with neoplastic disease. J Nucl Med 2009, 50:1611–1620.

    Article  PubMed  Google Scholar 

  50. Arauz A, Hoyos L, Zenteno M, et al.: Carotid plaque inflammation detected by 18F-fluorodeoxyglucose-positron emission tomography. Pilot study. Clin Neurol Neurosurg 2007, 109:409–412.

    Article  PubMed  Google Scholar 

  51. Rudd JH, Myers KS, Bansilal S, et al.: (18)Fluorodeoxyglucose positron emission tomography imaging of atherosclerotic plaque inflammation is highly reproducible: implications for atherosclerosis therapy trials. J Am Coll Cardiol 2007, 50:892–896.

    Article  PubMed  Google Scholar 

  52. Font MA, Fernandez A, Carvajal A, et al.: Imaging of early inflammation in low-to-moderate carotid stenosis by 18-FDG-PET. Front Biosci 2008, 14:3352–3360.

    Google Scholar 

  53. Varghese A, Crowe L, Mohiaddin RH, et al.: Interstudy reproducibility of 3D volume selective fast spin echo sequence for quantifying carotid artery wall volume in asymptomatic subjects. Atherosclerosis 2005, 183:361–366.

    Article  CAS  PubMed  Google Scholar 

  54. Ogawa M, Magata Y, Kato T, et al.: Application of 18F-FDG PET for monitoring the therapeutic effect of antiinflammatory drugs on stabilization of vulnerable atherosclerotic plaques. J Nucl Med 2006, 47:1845–1850.

    CAS  PubMed  Google Scholar 

  55. Tahara N, Kai H, Ishibashi M, et al.: Simvastatin attenuates plaque inflammation: evaluation by fluorodeoxyglucose positron emission tomography. J Am Coll Cardiol 2006, 48:1825–1831.

    Article  CAS  PubMed  Google Scholar 

  56. Rudd JH, Machac J, Fayad ZA: Simvastatin and plaque inflammation. J Am Coll Cardiol 2007, 49:1991–1992.

    Article  PubMed  Google Scholar 

  57. Lee SJ, On YK, Lee EJ, et al.: Reversal of vascular 18F-FDG uptake with plasma high-density lipoprotein elevation by atherogenic risk reduction. J Nucl Med 2008, 49:1277–1282.

    Article  CAS  PubMed  Google Scholar 

  58. Potter K, Lenzo N, Eikelboom JW, et al.: Effect of long-term homocysteine reduction with B vitamins on arterial wall inflammation assessed by fluorodeoxyglucose positron emission tomography: a randomised double-blind, placebo-controlled trial. Cerebrovasc Dis 2009, 27:259–265.

    Article  CAS  PubMed  Google Scholar 

  59. Williams G, Kolodny GM: Suppression of myocardial 18F-FDG uptake by preparing patients with a high-fat, low-carbohydrate diet. AJR Am J Roentgenol 2008, 190:W151–W156.

    Article  PubMed  Google Scholar 

  60. Williams G, Kolodny GM: Retrospective study of coronary uptake of 18F-fluorodeoxyglucose in association with calcification and coronary artery disease: a preliminary study. Nucl Med Commun 2009, 30:287–291.

    Article  CAS  PubMed  Google Scholar 

  61. Saam T, Rominger A, Wolpers S, et al.: Association of inflammation of the left anterior descending coronary artery with cardiovascular risk factors, plaque burden and pericardial fat volume: a PET/CT study. Eur J Nucl Med Mol Imaging 2010, 37:1203–1212.

    Article  PubMed  Google Scholar 

  62. Muntendam P, McCall C, Sanz J, et al.: The BioImage Study: novel approaches to risk assessment in the primary prevention of atherosclerotic cardiovascular disease—study design and objectives. Am Heart J 2010, 160:49–57.e41.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

Work described in this manuscript was partly funded by the Cambridge Biomedical Research Centre.

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James H. F. Rudd.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hiari, N., Rudd, J.H.F. FDG PET Imaging and Cardiovascular Inflammation. Curr Cardiol Rep 13, 43–48 (2011). https://doi.org/10.1007/s11886-010-0150-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-010-0150-5

Keywords

Navigation