Skip to main content
Log in

Granulocytes utilize different energy sources for movement and phagocytosis

  • Original Articles
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Granulocytes depend on anaerobic glycolysis for the energy required for chemotaxis, phagocytosis, and microbial killing. Two potential sources of the needed glucose are available: exogenous glucose and intracellular glycogen. These studies demonstrate that chemotaxin-induced movement of granulocytes induces accelerated uptake of exogenous glucose while phagocytosis does not, presumably utilizing instead the relatively slow process of glycogenolysis. As measured by incorporation of extracellular radiolabeled hexoses [1-14C]glucose or [3H]deoxyglucose), the soluble chemotaxin-aggregants of granulocytes, nF-met-leu-phe, CSades arg, bacterial filtrate, or arachidonic acid all augment transmembrane hexose uptake. This insulin-like activity closely parallels the dose-related effects of these agents on induction of granulocyte aggregation and chemotaxis. Insulin, itself, affects glucose transport minimally and mainly at supraphysiologic concentrations. In contrast, phagocytic stimuli fail to enhance hexose uptake at all, despite stimulating catabolism of glucose, which in turn is probably generated by glycogenolysis. These data show that granulocytes, whose motile function occurs in glucose-rich milieu, alter in tandem their cellular glucose uptake with their movement response. For phagocytosis, which often occurs in hypoglycotic, purulent exudates, granulocytes depend on stored energy supplies—probably glycogen. This coordination may be crucial in supporting granulocyte antimicrobial activity during acute inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stjernholm, R. L., C. P. Burns, andJ. H. Hohnadel. 1972. Carbohydrate metabolism by leukocytes.Enzyme 13:7.

    Google Scholar 

  2. Carruthers, B. M. 1967. Leukocyte motility.Can. J. Physiol. Pharmacol. 45:269.

    Google Scholar 

  3. Craddock, P. R., Y. Yawata, L. Van Samten, S. Gilberstadt, S. Silvis, andH. S. Jacob. 1974. Acquired phagocyte dysfunction: A complication of the hypophosphatemia of parenteral hyperalimentation.N. Engl. J. Med. 290:1403.

    Google Scholar 

  4. Stossel, T. P., F. Murad, R. J. Mason, andM. Vaughn. 1970. Regulation of glycogen metabolism in polymorphonuclear leukocytes.J. Biol. Chem. 245:6228.

    Google Scholar 

  5. Craddock, P. R., D. E. Hammerschmidt, J. G. White, A. P. Dalmasso, andH. S. Jacob. 1977. Complement (C5a)-induced granulocyte aggregation in vitro.J. Clin. Invest. 60:260.

    Google Scholar 

  6. Skubitz, K. M., andP. R. Craddock. 1981. The reversal of hemodialysis granulocytopenia and pulmonary leukostasis: A clinical manifestation of selective down-regulation of granulocyte responses to C5ades arg.J. Clin. Invest. 67:1383.

    Google Scholar 

  7. Craddock, P. R., White, J. G., Weisdorf, D. J., andD.E. Hammerschmidt. 1980. Digital integration of granulocyte aggregation responses.Inflammation 4:381.

    Google Scholar 

  8. Norton, J. M., andA. Munck. 1980. Glucose transport in murine macrophages: In vitro characterization of the monosaccharide transport system of the thioglycollate-elicited mouse peritoneal macrophage.J. Immunol. 125:252.

    Google Scholar 

  9. DeChatelet, L. R., T. L. Campbell, C. E. McCALL, P. S. Shirley, andC. L. Swenson. 1980. Oxidation of 2-Deoxyglucose by human polymorphonuclear leukocytes.Inflammation 4:249.

    Google Scholar 

  10. Fussganger, R. D., C. R. Kahn, J. Roth, andP. De Mets. 1976. Binding and degradation of insulin by human peripheral granulocytes.J. Biol. Chem. 251:2761.

    Google Scholar 

  11. Schwartz, R. M., A. R. Bianco, B. S. Handwerger, andC. R. Kahn. 1975. Demonstration that monocytes rather than lymphocytes are the insulin-binding cells in preparations of human peripheral blood mononuclear leukocytes: Implication for studies of insulin-resistant states in man.Proc. Natl. Acad. Sci. U.S.A. 72:474.

    Google Scholar 

  12. McAll, C. E., D. A. Bass, S. Cousart, andL. R. DeChatelet. 1979. Enhancement of hexose uptake in human polymorphonuclear leukocytes by activated complement component C5a.Proc. Natl. Acad. Sci. U.S.A. 76:5896.

    Google Scholar 

  13. Keuhl, F. A., andR. W. Egan. 1980. Prostaglandins, arachidonic acid and inflammation.Science 210:978.

    Google Scholar 

  14. Weisdorf, D. J., P. J. Flynn, D. E. Hammerschmidt, H. S. Jacob, andP. R. Craddock. 1980. Endogenous thromboxanes modulate the granulocyte aggregation, glucose uptake and locomotion stimulated by soluble chemotaxins.Clin. Res. 28:327A.

    Google Scholar 

  15. Zurier, R. B., andD. M. Sayadoff. 1975. Release of prostaglandins from human polymorphonuclear leukocytes.Inflammation 1:93.

    Google Scholar 

  16. Bass, D. A., J. T. O'Flaherty, P. Szejda, L. R. DeChatelet, andC. E. McCall. 1980. Role of arachidonic acid in stimulation of hexose transport by human polymorphonuclear leukocytes.Proc. Natl. Acad. Sci. U.S.A. 77:5125.

    Google Scholar 

  17. Sbarra, A. J., andM. L. Karnovsky. 1959. The biochemical basis of phagocytosis. I. Metabolic changes during ingestion of particles by polymorphonuclear leukocytes.J. Biol. Chem. 234:1355.

    Google Scholar 

  18. Stjernholm, R. L., andR. C. Manak. 1970. Regulation of pentose cycle activity and glycogen metabolism during phagocytosis.J. Reticuloendothel. Soc. 8:550.

    Google Scholar 

  19. Lehninoer, A. 1970. Biochemistry: The Molecular Basis of Cell Structure and Function. Worth Publishers, New York. 157.

    Google Scholar 

  20. Bass, D. A., M. J. Thomas, E. J. Goetzl, L. R. Dechatelet, andC. E. McCall. 1981. Lipoxygenase-derived products of arachidonic acid mediate stimulation of hexose uptake in human polymorphonuclear leukocytes.Biochem. Biophys. Res. Commun. 100:1.

    Google Scholar 

  21. Esmann, V. 1963. Effect of insulin on human leukocytes.Diabetes 12:545.

    Google Scholar 

  22. Englhardt, A., andT. H. Metz. 1971. Investigations on glucose uptake in isolated human leukocytes from normal and diabetic subjects.Diabetologia 7:143.

    Google Scholar 

  23. Leroux, J. P., J. C. Marchand, R. HoNG TuAN Ha, andP. Cartier. 1975. The influence of insulin on glucose permeability and metabolism of human granulocytes.Eur. J. Biochem. 58:367.

    Google Scholar 

  24. Tsan, M. 1979. Effect of phagocytosis by human polymorphonuclear leukocytes and rabbit alveolar macrophages on 2-deoxyglucose transport.J. Cell. Physiol. 99:23.

    Google Scholar 

  25. Weisdorf, D. J., H. S. Jacob, andP. R. Craddock. 1980. Granulocyte energy supply: Glycogenolysis versus exogenous glucose uptake.Clin. Res. 28:731 A.

    Google Scholar 

  26. Neal, H. M., L. R. Dechatelet, C. E. McCall, andD. A. Bass. 1981. Separable stimulation of glycogen phosphorylase or hexose uptake of human polymorphonuclear leukocytes.Fed. Proc. 40:791.

    Google Scholar 

  27. Scott, R. B. 1968. Glycogen in human peripheral leukocytes.J. Clin. Invest. 47:344.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supplied in part by grants from the National Institutes of Health: CA15627, HL19725, AM1573O, and HL07062. Dr. Craddock is a recipient of an N.I.H. Research Career Development Award, K04-00479. Dr. Weisdorf is a recipient of an N.I.H. New Investigator Award, AI 18160.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weisdorf, D.J., Craddock, P.R. & Jacob, H.S. Granulocytes utilize different energy sources for movement and phagocytosis. Inflammation 6, 245–256 (1982). https://doi.org/10.1007/BF00916406

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00916406

Keywords

Navigation