Skip to main content

Advertisement

Log in

Pro-Inflammatory Genetic Markers of Atherosclerosis

  • Genetics (AJ Marian, Section Editor)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Atherosclerosis (AS) is a chronic, progressive, multifactorial disease mostly affecting large and medium-sized elastic and muscular arteries. It has formerly been considered a bland lipid storage disease. Currently, multiple independent pathways of evidence suggest this pathological condition is a peculiar form of inflammation, triggered by cholesterol-rich lipoproteins and influenced both by environmental and genetic factors. The Human Genome Project opened up the opportunity to dissect complex human traits and to understand basic pathways of multifactorial diseases such as AS. Population-based association studies have emerged as powerful tools for examining genes with a role in common multifactorial diseases that have a strong environmental component. These association studies often estimate the risk of developing a certain disease in carriers and non-carriers of a particular genetic polymorphism. Dissecting out the influence of pro-inflammatory genes within the complex pathophysiology of AS and its complications will help to provide a more complete risk assessment and complement known classical cardiovascular risk factors. The detection of a risk profile will potentially allow both the early identification of individuals susceptible to disease and the possible discovery of potential targets for drug or lifestyle modification; i.e. it will open the door to personalized medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Aksu K, Donmez A, Keser G. Inflammation-induced thrombosis: mechanisms, disease associations and management. Curr Pharm Des. 2012;18:1478–93.

    Article  PubMed  CAS  Google Scholar 

  2. Levi M, van der Poll T, Schultz M. New insights into pathways that determine the link between infection and thrombosis. Neth J Med. 2012;70:114–20.

    PubMed  CAS  Google Scholar 

  3. •• Libby P. Inflammation and atherosclerosis: from pathophysiology to practice. JACC 2009;54:2129–2138. In this review, an updatee of the role of inflammation in atherosclerosis is provided, and the potential effects of the translation of the advance in basic science on clinical practice is highlighted.

    Article  PubMed  CAS  Google Scholar 

  4. Rupprecht HJ, Blankenberg S, Bickel C, et al. Impact of viral and bacterial infectious burden on long-term prognosis in patients with coronary artery disease. Circulation. 2001;104:25–31.

    Article  PubMed  CAS  Google Scholar 

  5. Ross R. Atherosclerosis: an inflammatory disease. NEJM. 1999;340:115–26.

    Article  PubMed  CAS  Google Scholar 

  6. Li H, Cybulsky MI, Gimbrone Jr MA, Libby P. An atherogenic diet rapidly induces VCAM-1, a cytokine regulatable mononuclear leukocyte adhesion molecole, in rabbit endothelium. Arterioscler Thromb. 1993;13:197–204.

    Article  PubMed  Google Scholar 

  7. Eriksson EE, Xie X, Werr J, Thoren P, Lindbom L. Importance of primary capture and L-selectine-dependent secondary capture in leukocyte accumulation in inflammation and atherosclerosis in vivo. J Exp Med. 2001;194:205–18.

    Article  PubMed  CAS  Google Scholar 

  8. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. NEJM. 2005;352:1685–95.

    Article  PubMed  CAS  Google Scholar 

  9. Peiser L, Mukhopadhyay S, Gordon S. Scavenger receptors in innate immunity. Curr Opin Immunol. 2002;14:123–8.

    Article  PubMed  CAS  Google Scholar 

  10. Taleb S, Tedgui A, Mallat Z. Adaptive T cell immune responses and atherogenesis. Curr Opin Pharmacol. 2010;10:197–202.

    Article  PubMed  CAS  Google Scholar 

  11. Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation. 2002;105:1135–43.

    Article  PubMed  CAS  Google Scholar 

  12. MRC/BHF. Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomized placebo-controlled trial. Lancet. 2002;360:7–22.

    Article  Google Scholar 

  13. Blake GJ, Ridker PM. Are statins anti-inflammatory? Curr Cont Trial Cardiovasc Med. 2000;1:161–5.

    Article  CAS  Google Scholar 

  14. Abou-Raya A, Aboiu-Raya S. Inflammation: a pivotal link between autoimmune disease and atherosclerosis. Autoimmun Rev. 2006;5:331–7.

    Article  PubMed  CAS  Google Scholar 

  15. Watson DJ, Rhodes T, Guess HA. All-cause mortality and vascular events among patients with rheumatoid arthritis, osteoarthritis, or no arthritis in the UK General Practice Research Database. J Rheumatol. 2003;30:1196–202.

    PubMed  Google Scholar 

  16. Salomon DH, Karlson EW, Rimm EB, et al. Cardiovascular morbidity and mortality in women diagnosed with rheumatoid arthritis. Circulation. 2003;107:1303–7.

    Article  Google Scholar 

  17. Fischer LM, Schlienger RG, Matter C, Jick H, Meier CR. Effects of rheumatoid arthritis or systemic lupus erytematosus on the risk of first-time acute myocardial infarction. Am J Cardiol. 2004;93:198–200.

    Article  PubMed  Google Scholar 

  18. Micha R, Imamura F, von Ballmoos MW, et al. Systemic review and meta-analysis of methotrexate use and risk of cardiovascular disease. Am J Cardiol. 2011;108:1362–70.

    Article  PubMed  CAS  Google Scholar 

  19. Choi HK, Hernán MA, Seeger JD, Robins JM, Wolfe F. Methotrexate and mortality in patients with rheumatoid arthritis: a prospective study. Lancet. 2002;359:1173–7.

    Article  PubMed  CAS  Google Scholar 

  20. Cheung AK, Sarnak MJ, Yan G, et al. Cardiac diseases in maintenance hemodialysis patients: results of HEMO study. Kidney Int. 2004;65:2380–9.

    Article  PubMed  Google Scholar 

  21. Cotti E, Dessì C, Piras A, Mercuro G. Can a chronic dental infection be considered a cause of cardiovascular disease? A review of the literature. Int J Cardiol. 2011;148:4–10.

    Article  PubMed  Google Scholar 

  22. • Lockhart PB, Bolger AF, Papapanou PN et al. Periodontal disease and atherosclerotic vascular disease: does the evidence support an independent association?: a scientific statement from the American Heart Association. Circulation 2012;125:2520–2544. In this paper, the possible causal association between atherosclerosis and periodontal disease, as a prototype of chronic low grade inflammation, is widely examined.

    Article  PubMed  Google Scholar 

  23. Willersoin JT, Ridker PM. Inflammation as a cardiovascular risk factor. Circulation. 2004;109:II2–10.

    Google Scholar 

  24. Goldschmidt-Clermont PJ, Dong C, Seo DM, Velazquez OC. Atherosclerosis, inflammation, genetics, and stem cells: 2012 update. Curr Atheroscler Rep. 2012;14:201–10.

    Article  PubMed  CAS  Google Scholar 

  25. Sørensen TI, Nielsen GG, Andersen PK, Teasdale TW. Genetic and environmental influences on premature death in adult adoptees. NEJM. 1988;318:727–32.

    Article  PubMed  Google Scholar 

  26. Gunter C. Genomics: a picture worth 1000 Genomes. Nat Rev Genet. 2010;11:814.

    Article  PubMed  CAS  Google Scholar 

  27. Genomics PE. 1000 Genomes Project gives new map of genetic diversity. Science. 2010;330:574–5.

    Article  Google Scholar 

  28. Marian AJ. Molecular genetic studies of complex phenotypes. Transl Res. 2012;159:64–79.

    Article  PubMed  CAS  Google Scholar 

  29. Candore G, Vasto S, Colonna-Romano G, et al. Atherosclerosis. In: Vandenbroek K, editor. Cytokine gene polymorphisms in multifactorial condition. Boca Raton, FL, USA: Taylor & Francis; 2006. p. 363–78.

    Google Scholar 

  30. Di Bona D, Vasto S, Capurso C, et al. Effect of interleukin-6 polymorphisms on human longevity: a systematic review and meta-analysis. Ageing Res Rev. 2009;8:36–42.

    Article  PubMed  Google Scholar 

  31. Balistreri CR, Colonna-Romano G, Lio D, Candore G, Caruso C. TLR4 polymorphisms and ageing: implications for the pathophysiology of age-related diseases. J Clin Immunol. 2009;29:406–15.

    Article  PubMed  CAS  Google Scholar 

  32. Balistreri CR, Caruso C, Listì F, et al. LPS-mediated production of pro/anti-inflammatory cytokines and eicosanoids in whole blood samples: biological effects of +896A/G TLR4 polymorphism in a Sicilian population of healthy subjects. Mech Ageing Dev. 2011;132:86–92.

    Article  PubMed  CAS  Google Scholar 

  33. Zhang K, Zhang L, Zhou B, et al. Lack of association between TLR4 Asp299Gly polymorphism and atherosclerosis: evidence from meta-analysis. Thromb Res. 2012;13:e203–8.

    Article  Google Scholar 

  34. Koch W, Hoppmann P, Pfeufer A, Schömig A, Kastrati A. Toll-like receptor 4 gene polymorphisms and myocardial infarction: no association in a Caucasian population. Eur Heart J. 2006;27:2524–9.

    Article  PubMed  CAS  Google Scholar 

  35. LeVan TD, Bloom JW, Bailey TJ, et al. A common single nucleotide polymorphism in the CD14 promoter decreases the affinity of Sp protein binding and enhances transcriptional activity. J Immunol. 2001;167:5838–44.

    PubMed  CAS  Google Scholar 

  36. Pu H, Yin J, Wu Y et al. The association between CD14 gene C-260 T polymorphism and coronary heart disease risk: a meta-analysis. Mol Biol Rep. 2013 Jan 1. doi:10.1007/s11033-012-2478-y.

  37. Bielinski SJ, Pankow JS, Li N, Hsu FC, Adar SD, Jenny NS, et al. ICAM1 and VCAM1 polymorphisms, coronary artery calcium, and circulating levels of soluble ICAM-1: the multi-ethnic study of atherosclerosis (MESA). Atherosclerosis. 2008;201:339–44.

    Article  PubMed  CAS  Google Scholar 

  38. Ji YN, Wang Q, Zhan P. Intercellular adhesion molecule 1 gene K469E polymorphism is associated with coronary heart disease risk: a meta-analysis involving 12 studies. Mol Biol Rep. 2012;39:6043–8.

    Article  PubMed  CAS  Google Scholar 

  39. Lio D, Scola L, Crivello A, et al. Inflammation, genetics, and longevity: further studies on the protective effects in men of IL-10-1082 promoter SNP and its interaction with TNF-alpha −308 promoter SNP. J Med Genet. 2003;40:296–9.

    Article  PubMed  CAS  Google Scholar 

  40. Zhang HF, Xie SL, Wang JF, et al. Tumor necrosis factor-alpha G-308A gene polymorphism and coronary heart disease susceptibility: an updated meta-analysis. Thromb Res. 2011;127:400–5.

    Article  PubMed  CAS  Google Scholar 

  41. Sie MP, Sayed-Tabatabaei FA, Oei HH, et al. Interleukin 6–174 G/C promoter polymorphism and risk of coronary heart disease: results from the rotterdam study and a meta-analysis. Arterioscler Thromb Vasc Biol. 2006;26:212–7.

    Article  PubMed  CAS  Google Scholar 

  42. Kim HL, Lee DS, Yang SH, Lim CS, Chung JH, Kim S, et al. The polymorphism of monocyte chemoattractant protein-1 is associated with the renal disease of SLE. Am J Kidney Dis. 2002;40:1146–52.

    Article  PubMed  CAS  Google Scholar 

  43. Nakayama EE, Tanaka Y, Nagai Y, Iwamoto A, Shioda T. A CCR2-V64I polymorphism affects stability of CCR2A isoform. AIDS. 2004;18:729–38.

    Article  PubMed  CAS  Google Scholar 

  44. Wang Y, Zhang W, Li S, et al. Genetic variants of the monocyte chemoattractant protein-1 gene and its receptor CCR2 and risk of coronary artery disease: a meta-analysis. Atherosclerosis. 2011;219:224–30.

    Article  PubMed  CAS  Google Scholar 

  45. Franceschi C, Motta L, Motta M, et al. The extreme longevity: the state of the art in Italy. Exp Gerontol. 2008;43:45–52.

    Article  PubMed  Google Scholar 

  46. Caruso C, Passarino G, Puca A, Scapagnini G. "Positive biology": the centenarian lesson. Immun Ageing. 2012;9:5.

    Article  PubMed  Google Scholar 

  47. Balistreri CR, Candore G, Colonna-Romano G, et al. Role of Toll-like receptor 4 in acute myocardial infarction and longevity. JAMA. 2004;292:2339–40.

    Article  PubMed  CAS  Google Scholar 

  48. Balistreri CR, Candore G, Caruso M, et al. Role of polymorphisms of CC-chemokine receptor-5 gene in acute myocardial infarction and biological implications for longevity. Haematologica. 2008;93:637–8.

    Article  PubMed  CAS  Google Scholar 

  49. Listì F, Caruso M, Incalcaterra E, et al. Pro-inflammatory gene variants in myocardial infarction and longevity: inplications for pharmacogenomics. Curr Pharm Des. 2008;14:2678–85.

    Article  PubMed  Google Scholar 

  50. Listì F, Candore G, Lio D, et al. Association between C1019T polymorphism of connexin37 and acute myocardial infarction: a study in patients from Sicily. Int J Cardiol. 2005;102:269–71.

    Article  PubMed  Google Scholar 

  51. Listì F, Candore G, Balistreri CR, et al. Connexin37 1019 gene polymorphism in myocardial infarction patients and centenarians. Atherosclerosis. 2007;191:460–1.

    Article  PubMed  Google Scholar 

  52. Lio D, Candore G, Crivello A, et al. Opposite effects of interleukin 10 common gene polymorphisms in cardiovascular diseases and in successful ageing: genetic background of male centenarians is protective against coronary heart disease. J Med Genet. 2004;41:790–4.

    Article  PubMed  CAS  Google Scholar 

  53. Listì F, Candore G, Grimaldi MP, et al. Alpha1-antitrypsin heterozygosity plays a positive role in attainment of longevity. Biogerontology. 2007;8:139–45.

    Article  PubMed  Google Scholar 

  54. Grimaldi MP, Candore G, Vasto S, et al. Role of the pyrin M694V (A2080G) allele in acute myocardial infarction and longevity: a study in the Sicilian population. J Leukoc Biol. 2006;79:611–5.

    Article  PubMed  CAS  Google Scholar 

  55. • Manolio TA. Genomewide association studies and assessment of the risk of disease. N Engl J Med. 2010;363:166–76. This is an extensive review on the meaning, the technical aspects, and the challenges of the Genomewide Association Study. A survey of findings with an updated web link is also reported.

    Article  PubMed  CAS  Google Scholar 

  56. Zernecke A, Shagdarsuren E, Weber C. Chemokines in atherosclerosis: an update. Arterioscler Thromb Vasc Biol. 2008;28:1897–908.

    Article  PubMed  CAS  Google Scholar 

  57. Gudbjartsson DF, Bjornsdottir US, Halapi E, et al. Sequence variants affecting eosinophil numbers associate with asthma and myocardial infarction. Nat Genet. 2009;41:342–7.

    Article  PubMed  CAS  Google Scholar 

  58. Davies RW, Wells GA, Stewart AF, et al. A Genome Wide Association Study for Coronary Artery Disease Identifies a Novel Susceptibility Locus in the Major Histocompatibility Complex. Circ Cardiovasc Genet. 2012;5:217–25.

    Article  PubMed  CAS  Google Scholar 

  59. Schunkert H, Erdmann J, Samani NJ. Genetics of myocardial infarction: a progress report. Eur Heart J. 2010;31:918–25.

    Article  PubMed  Google Scholar 

  60. Samani NJ, Erdmann J, Hall AS, et al. Genomewide association analysis of coronary artery disease. N Engl J Med. 2007;357:443–53.

    Article  PubMed  CAS  Google Scholar 

  61. Samani NJ, Deloukas P, Erdmann J, et al. Large-scale association analysis of novel genetic loci for coronary artery disease. Arterioscler Thromb Vasc Biol. 2009;29:774–80.

    Article  PubMed  CAS  Google Scholar 

  62. Kathiresan S, Voight BF, Purcell S. Musunuru et al. Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants. Nat Genet. 2009;41:334–41.

    Article  PubMed  CAS  Google Scholar 

  63. Erdmann J, Grosshennig A, Braund PS, et al. New susceptibility locus for coronary artery disease on chromosome 3q22.3. Nat Genet. 2009;41:280–2.

    Article  PubMed  CAS  Google Scholar 

  64. Tregouet DA, Konig IR, Erdmann J, et al. Genome-wide haplotype association study identifies the SLC22A3-LPAL2-LPA gene cluster as a risk locus for coronary artery disease. Nat Genet. 2009;41:283–5.

    Article  PubMed  CAS  Google Scholar 

  65. McPherson R, Pertsemlidis A, Kavaslar N, et al. A common allele on chromosome 9 associated with coronary heart disease. Science. 2007;316:1488–91.

    Article  PubMed  CAS  Google Scholar 

  66. Helgadottir A, Thorleifsson G, Manolescu A, et al. A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science. 2007;316:1491–3.

    Article  PubMed  CAS  Google Scholar 

  67. WTCCC. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447:661–78.

    Article  Google Scholar 

  68. Soranzo N, Spector TD, Mangino M, et al. A genomewide meta-analysis identifies 22 loci associated with eight hematological parameters in the HaemGen consortium. Nat Genet. 2009;41:1182–90.

    Article  PubMed  CAS  Google Scholar 

  69. Nehal NM, Mingyao L, Dilusha W, et al. The novel atherosclerosis locus at 10q11 regulates plasma CXCL12 levels. Eur Heart J. 2011;32:963–71.

    Article  Google Scholar 

  70. Schunkert H, König IR, Kathiresan S, et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat Genet. 2011;43:333–8.

    Article  PubMed  CAS  Google Scholar 

  71. Teslovich TM, Musunuru K, Smith AV, et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature. 2010;466:707–13.

    Article  PubMed  CAS  Google Scholar 

  72. Clarke R, Peden JF, Hopewell JC, et al. Genetic variants associated with Lp(a) lipoprotein level and coronary disease. N Engl J Med. 2009;361:2518–28.

    Article  PubMed  CAS  Google Scholar 

  73. Reilly MP, Li M, He J, et al. Identification of ADAMTS7 as a novel locus for coronary atherosclerosis and association of AB0 with Myocardial infarction in the presence of coronary atherosclerosis: two genome-wide association studies. Lancet. 2011;377:383–92.

    Article  PubMed  CAS  Google Scholar 

  74. Naitza S, Porcu E, Steri M, et al. A genome-wide association scan on the levels of markers of inflammation in Sardinians reveals associations that underpin its complex regulation. PLoS Genet. 2012;8:e1002480.

    Article  PubMed  CAS  Google Scholar 

  75. Karakas M, Baumert J, Kleber ME, et al. A variant in AB0 gene explains the variation in soluble E-Selectin levels – Results from dense genotyping in two independent populations. PLoS One. 2012;7:e51441.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

GA is PhD student of Pathobiology PhD course (directed by Prof Calogero Caruso) at Palermo University, and this paper is submitted in partial fulfillment of the requirements for her PhD degree.

Conflicts of Interest

Egle Incalcaterra declares that she has no conflicts of interest.

Giulia Accardi declares that she has no conflicts of interest.

Carmela Rita Balistreri declares that she has no conflicts of interest.

Gregorio Caimi declares that he has no conflicts of interest.

Giuseppina Candore declares that she has no conflicts of interest.

Marco Caruso declares that he has no conflicts of interest.

Calogero Caruso declares that he has no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Calogero Caruso.

Additional information

This article is part of the Topical Collection on Genetics

Rights and permissions

Reprints and permissions

About this article

Cite this article

Incalcaterra, E., Accardi, G., Balistreri, C.R. et al. Pro-Inflammatory Genetic Markers of Atherosclerosis. Curr Atheroscler Rep 15, 329 (2013). https://doi.org/10.1007/s11883-013-0329-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11883-013-0329-5

Keywords

Navigation