Skip to main content
Log in

Genetics of HDL-C: A Causal Link to Atherosclerosis?

  • Genetics (AJ Marian, Section Editor)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Prospective epidemiological studies have consistently reported an inverse association between HDL cholesterol (HDL-C) levels and the risk of cardiovascular disease (CVD). However, large intervention trials on HDL-C-increasing drugs and recent Mendelian randomization studies have questioned a causal relationship between HDL-C and atherosclerosis. HDL-C levels have been shown to be highly heritable, and the combination of HDL-C-associated SNPs in recent large-scale genome-wide association studies (GWAS) only explains a small proportion of this heritability. As a large part of our current understanding of HDL metabolism comes from genetic studies, further insights in this research field may aid us in elucidating HDL functionality in relation to CVD risk. In this review we focus on the question of whether genetically defined HDL-C levels are associated with risk of atherosclerosis. We also discuss the latest insights for HDL-C-associated genes and recent GWAS data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Lewington S, Whitlock G, Clarke R, et al. Blood cholesterol and vascular mortality by age, sex, and blood pressure: a meta-analysis of individual data from 61 prospective studies with 55,000 vascular deaths. Lancet. 2007;370(9602):1829–39.

    Article  PubMed  Google Scholar 

  2. Di Angelantonio E, Sarwar N, Perry P, et al. Major lipids, apolipoproteins, and risk of vascular disease. JAMA. 2009;302(18):1993–2000.

    Article  PubMed  Google Scholar 

  3. Barter P, Gotto AM, LaRosa JC, et al. HDL cholesterol, very low levels of LDL cholesterol, and cardiovascular events. N Engl J Med. 2007;357(13):1301–10.

    Article  PubMed  CAS  Google Scholar 

  4. Scandinavian Simvastatin Survival Study Group. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet. 1994;344(8934):1383–9.

    Google Scholar 

  5. Sacks FM, Pfeffer MA, Moye LA, et al. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. Cholesterol and recurrent events trial investigators. N Engl J Med. 1996;335(14):1001–9.

    Article  PubMed  CAS  Google Scholar 

  6. • Fisher EA, Feig JE, Hewing B, et al. High-density lipoprotein function, dysfunction, and reverse cholesterol transport. Arterioscler Thromb Vasc Biol. 2012;32(12):2813–20. Excellent recent review on HDL functionality.

    Article  PubMed  CAS  Google Scholar 

  7. Navab M, Reddy ST, Van Lenten BJ, Fogelman AM. HDL and cardiovascular disease: atherogenic and atheroprotective mechanisms. Nat Rev Cardiol. 2011;8(4):222–32.

    Article  PubMed  CAS  Google Scholar 

  8. Soran H, Hama S, Yadav R, Durrington PN. HDL functionality. Curr Opin Lipidol. 2012;23(4):353–66.

    Article  PubMed  CAS  Google Scholar 

  9. Boden WE, Probstfield JL, Anderson T, et al. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N Engl J Med. 2011;365(24):2255–67.

    Article  PubMed  Google Scholar 

  10. Schwartz GG, Olsson AG, Abt M, et al. Effects of dalcetrapib in patients with a recent acute coronary syndrome. N Engl J Med. 2012;367(22):2089–99.

    Article  PubMed  CAS  Google Scholar 

  11. Barter PJ, Caulfield M, Eriksson M, et al. Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med. 2007;357(21):2109–22.

    Article  PubMed  CAS  Google Scholar 

  12. Merck, Merck Announces HPS2-THRIVE Study of TREDAPTIVE (Extended-Release Niacin / Laropiprant) Did Not Achieve Primary Endpoint. Press release. December 20, 2012.

  13. Weiss LA, Pan L, Abney M, Ober C. The sex-specific genetic architecture of quantitative traits in humans. Nat Genet. 2006;38(2):218–22.

    Article  PubMed  CAS  Google Scholar 

  14. Teslovich TM, Musunuru K, Smith AV, et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature. 2010;466(7307):707–13.

    Article  PubMed  CAS  Google Scholar 

  15. •• Asselbergs FW, Guo Y, Van Iperen EPA, et al. Large-scale gene-centric meta-analysis across 32 studies identifies multiple lipid loci. Am J Hum Genet. 2012;91(5):823–838. One of the most recent large scale gene centric meta-analysis on lipid heritablity.

  16. Calabresi L, Baldassarre D, Castelnuovo S, et al. Functional lecithin: cholesterol acyltransferase is not required for efficient atheroprotection in humans. Circulation. 2009;120(7):628–35.

    PubMed  CAS  Google Scholar 

  17. Hovingh GK, Hutten BA, Holleboom AG, et al. Compromised LCAT function is associated with increased atherosclerosis. Circulation. 2005;112(6):879–84.

    Article  PubMed  CAS  Google Scholar 

  18. Van Dam MJ, De Groot E, Clee SM, et al. Association between increased arterial-wall thickness and impairment in ABCA1-driven cholesterol efflux: an observational study. Lancet. 2002;359(9300):37–42.

    Article  PubMed  Google Scholar 

  19. Bochem AE, Van Wijk DF, Holleboom AG, et al. ABCA1 mutation carriers with low high-density lipoprotein cholesterol are characterized by a larger atherosclerotic burden. Eur Heart J. 2012. doi:10.1093/eurheartj/ehs376.

  20. •• Voight BF, Peloso GM, Orho-Melander M, et al. Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study. Lancet. 2012;380(9841):572–80. Recent Mendelian randomization study that found no association between EL gene variation, HDL-C values and CVD risk.

    Article  PubMed  CAS  Google Scholar 

  21. Haase CL, Tybjærg-Hansen A, Qayyum AA, et al. LCAT, HDL cholesterol and ischemic cardiovascular disease: a mendelian randomization study of HDL cholesterol in 54,500 individuals. J Clin Endocrinol Metab. 2012;97(2):E248–56.

    Article  PubMed  CAS  Google Scholar 

  22. Joy T, Wang J, Hahn A, Hegele RA. APOA1 related amyloidosis: a case report and literature review. Clin Biochem. 2003;36(8):641–5.

    Article  PubMed  CAS  Google Scholar 

  23. Ramella NA, Rimoldi OJ, Prieto ED, et al. Human apolipoprotein A-I-derived amyloid: its association with atherosclerosis. PLoS One. 2011;6(7):e22532.

    Article  PubMed  CAS  Google Scholar 

  24. Hovingh GK, De Groot E, Van der Steeg W, et al. Inherited disorders of HDL metabolism and atherosclerosis. Curr Opin Lipidol. 2005;16(2):139–45.

    Article  PubMed  CAS  Google Scholar 

  25. Wada M, Iso T, Asztalos BF, et al. Marked high density lipoprotein deficiency due to apolipoprotein A-I Tomioka (codon 138 deletion). Atherosclerosis. 2009;207(1):157–61.

    Article  PubMed  CAS  Google Scholar 

  26. Al-Sarraf A, Al-Ghofaili K, Sullivan DR, et al. Complete Apo AI deficiency in an Iraqi Mandaean family: case studies and review of the literature. J Clin Lipidol. 2010;4(5):420–6.

    Google Scholar 

  27. Santos RD, Schaefer EJ, Asztalos BF, et al. Characterization of high density lipoprotein particles in familial apolipoprotein A-I deficiency. J Lipid Res. 2008;49(2):349–57.

    Article  PubMed  CAS  Google Scholar 

  28. Tietjen I, Hovingh GK, Singaraja R, et al. Increased risk of coronary artery disease in Caucasians with extremely low HDL cholesterol due to mutations in ABCA1, APOA1, and LCAT. Biochim Biophys Acta. 2012;1821(3):416–24.

    Article  PubMed  CAS  Google Scholar 

  29. Haase CL, Frikke-Schmidt R, Nordestgaard BG, Tybjærg-Hansen A. Population-based resequencing of APOA1 in 10,330 individuals: spectrum of genetic variation, phenotype, and comparison with extreme phenotype approach. PLoS Genet. 2012;8(11):e1003063.

    Article  PubMed  CAS  Google Scholar 

  30. Haase CL, Frikke-Schmidt R, Nordestgaard BG, et al. Mutation in APOA1 predicts increased risk of ischaemic heart disease and total mortality without low HDL cholesterol levels. J Intern Med. 2011;270(2):136–46.

    Article  PubMed  CAS  Google Scholar 

  31. Strang AC, Hovingh GK, Stroes ESG, Kastelein JJP. The genetics of high-density lipoprotein metabolism: clinical relevance for therapeutic approaches. Am J Cardiol. 2009;104(10 Suppl):22E–31E.

    Article  PubMed  CAS  Google Scholar 

  32. Sirtori CR, Calabresi L, Franceschini G, et al. Cardiovascular status of carriers of the apolipoprotein A-IMilano mutant: the limone sul garda study. Circulation. 2001;103(15):1949–54.

    Article  PubMed  CAS  Google Scholar 

  33. Nissen SE, Tsunoda T, Tuzcu EM, et al. Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial. JAMA. 2003;290(17):2292–300.

    Article  PubMed  CAS  Google Scholar 

  34. Favari E, Gomaraschi M, Zanotti I, et al. A unique protease-sensitive high density lipoprotein particle containing the apolipoprotein A-I(Milano) dimer effectively promotes ATP-binding Cassette A1-mediated cell cholesterol efflux. J Biol Chem. 2007;282(8):5125–32.

    Article  PubMed  CAS  Google Scholar 

  35. Ibanez B, Giannarelli C, Cimmino G, et al. Recombinant HDL(Milano) exerts greater anti-inflammatory and plaque stabilizing properties than HDL(wild-type). Atherosclerosis. 2012;220(1):72–7.

    Article  PubMed  CAS  Google Scholar 

  36. Alexander ET, Weibel GL, Joshi MR, et al. Macrophage reverse cholesterol transport in mice expressing ApoA-I Milano. Arterioscler Thromb Vasc Biol. 2009;29(10):1496–501.

    Article  PubMed  CAS  Google Scholar 

  37. Osei-Hwedieh DO, Amar M, Sviridov D, Remaley AT. Apolipoprotein mimetic peptides: Mechanisms of action as anti-atherogenic agents. Pharmacol Ther. 2011;130(1):83–91.

    Article  PubMed  CAS  Google Scholar 

  38. Bodzioch M, Orsó E, Klucken J, et al. The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease. Nat Genet. 1999;22(4):347–51.

    Article  PubMed  CAS  Google Scholar 

  39. Brooks-Wilson A, Marcil M, Clee SM, et al. Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency. Nat Genet. 1999;22(4):336–45.

    Article  PubMed  CAS  Google Scholar 

  40. Rust S, Rosier M, Funke H, et al. Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1. Nat Genet. 1999;22(4):352–5.

    Article  PubMed  CAS  Google Scholar 

  41. Frikke-Schmidt R. Genetic variation in the ABCA1 gene, HDL cholesterol, and risk of ischemic heart disease in the general population. Atherosclerosis. 2010;208(2):305–16.

    Article  PubMed  CAS  Google Scholar 

  42. Candini C, Schimmel AW, Peter J, et al. Identification and characterization of novel loss of function mutations in ATP-binding cassette transporter A1 in patients with low plasma high-density lipoprotein cholesterol. Atherosclerosis. 2010;213(2):492–8.

    Article  PubMed  CAS  Google Scholar 

  43. Frikke-Schmidt R, Nordestgaard BG, Jensen GB, Tybjaerg-Hansen A. Genetic variation in ABC transporter A1 contributes to HDL cholesterol in the general population. J Clin Invest. 2004;114(9):1343–53.

    PubMed  CAS  Google Scholar 

  44. Frikke-Schmidt R, Nordestgaard BG, Jensen GB, et al. Genetic variation in ABCA1 predicts ischemic heart disease in the general population. Arterioscler Thromb Vasc Biol. 2008;28(1):180–6.

    Article  PubMed  CAS  Google Scholar 

  45. Frikke-Schmidt R, Nordestgaard BG, Schnohr P, et al. Mutation in ABCA1 predicted risk of ischemic heart disease in the Copenhagen City Heart Study Population. J Am Coll Cardiol. 2005;46(8):1516–20.

    Article  PubMed  CAS  Google Scholar 

  46. Zwarts KY, Clee SM, Zwinderman AH, et al. ABCA1 regulatory variants influence coronary artery disease independent of effects on plasma lipid levels. Clin Genet. 2002;61(2):115–25.

    Article  PubMed  CAS  Google Scholar 

  47. Jensen MK, Pai JK, Mukamal KJ, et al. Common genetic variation in the ATP-binding cassette transporter A1, plasma lipids, and risk of coronary heart disease. Atherosclerosis. 2007;195(1):e172–80.

    Article  PubMed  CAS  Google Scholar 

  48. Villarreal-Molina T, Posadas-Romero C, Romero-Hidalgo S, et al. The ABCA1 Gene R230C variant is associated with decreased risk of premature coronary artery disease: The Genetics of Atherosclerotic Disease (GEA) Study. PLoS One. 2012;7(11):e49285.

    Article  PubMed  CAS  Google Scholar 

  49. Frikke-Schmidt R, Nordestgaard BG, Stene MCA, et al. Association of loss-of-function mutations in the ABCA1 gene with high-density lipoprotein cholesterol levels and risk of ischemic heart disease. JAMA. 2008;299(21):2524–32.

    Article  PubMed  CAS  Google Scholar 

  50. Yvan-Charvet L, Wang N, Tall AR. Role of HDL, ABCA1, and ABCG1 transporters in cholesterol efflux and immune responses. Arterioscler Thromb Vasc Biol. 2010;30(2):139–43.

    Article  PubMed  CAS  Google Scholar 

  51. Sacco J, Adeli K. MicroRNAs: emerging roles in lipid and lipoprotein metabolism. Curr Opin Lipidol. 2012;23(3):220–5.

    Article  PubMed  CAS  Google Scholar 

  52. Calkin AC, Tontonoz P. Liver x receptor signaling pathways and atherosclerosis. Arterioscler Thromb Vasc Biol. 2010;30(8):1513–8.

    Article  PubMed  CAS  Google Scholar 

  53. Michael DR, Ashlin TG, Buckley ML, Ramji DP. Liver X receptors, atherosclerosis and inflammation. Curr Atheroscler Rep. 2012;14(3):284–93.

    Article  PubMed  CAS  Google Scholar 

  54. Zhang Y, Breevoort SR, Angdisen J, et al. Liver LXRα expression is crucial for whole body cholesterol homeostasis and reverse cholesterol transport in mice. J Clin Invest. 2012;122(5):1688–99.

    Article  PubMed  CAS  Google Scholar 

  55. Rayner KJ, Esau CC, Hussain FN, et al. Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides. Nature. 2011;478(7369):404–7.

    Article  PubMed  CAS  Google Scholar 

  56. Singaraja RR, Visscher H, James ER, et al. Specific mutations in ABCA1 have discrete effects on ABCA1 function and lipid phenotypes both in vivo and in vitro. Circ Res. 2006;99(4):389–97.

    Article  PubMed  CAS  Google Scholar 

  57. Rousset X, Shamburek R, Vaisman B, et al. Lecithin cholesterol acyltransferase: an anti- or pro-atherogenic factor? Curr Atheroscler Rep. 2011;13(3):249–56.

    Article  PubMed  CAS  Google Scholar 

  58. Kuivenhoven JA, Pritchard H, Hill J, et al. The molecular pathology of lecithin:cholesterol acyltransferase (LCAT) deficiency syndromes. J Lipid Res. 1997;38(2):191–205.

    PubMed  CAS  Google Scholar 

  59. Duivenvoorden R, De Groot E, Elsen BM, et al. In vivo quantification of carotid artery wall dimensions: 3.0-Tesla MRI versus B-mode ultrasound imaging. Circ Cardiovasc Imaging. 2009;2(3):235–42.

    Article  PubMed  CAS  Google Scholar 

  60. Duivenvoorden R, Holleboom AG, Van den Bogaard B, et al. Carriers of lecithin cholesterol acyltransferase gene mutations have accelerated atherogenesis as assessed by carotid 3.0-T magnetic resonance imaging [corrected]. J Am Coll Cardiol. 2011;58(24):2481–7.

    Article  PubMed  CAS  Google Scholar 

  61. Van den Bogaard B, Holleboom AG, Duivenvoorden R, et al. Patients with low HDL-cholesterol caused by mutations in LCAT have increased arterial stiffness. Atherosclerosis. 2012;225(2):481–5.

    Article  PubMed  Google Scholar 

  62. AlphacorePharma, Press release October 9 2012. Available from: www.alphacorepharm/in-the-news.

  63. Albers JJ, Vuletic S, Cheung MC. Role of plasma phospholipid transfer protein in lipid and lipoprotein metabolism. Biochim Biophys Acta. 2012;1821(3):345–57.

    Article  PubMed  CAS  Google Scholar 

  64. Yazdanyar A, Yeang C, Jiang X-C. Role of phospholipid transfer protein in high-density lipoprotein- mediated reverse cholesterol transport. Curr Atheroscler Rep. 2011;13(3):242–8.

    Article  PubMed  CAS  Google Scholar 

  65. Cheung MC, Wolfbauer G, Deguchi H, et al. Human plasma phospholipid transfer protein specific activity is correlated with HDL size: implications for lipoprotein physiology. Biochim Biophys Acta. 2009;1791(3):206–11.

    Article  PubMed  CAS  Google Scholar 

  66. Vergeer M, Boekholdt SM, Sandhu MS, et al. Genetic variation at the phospholipid transfer protein locus affects its activity and high-density lipoprotein size and is a novel marker of cardiovascular disease susceptibility. Circulation. 2010;122(5):470–7.

    Article  PubMed  CAS  Google Scholar 

  67. Jarvik GP, Rajagopalan R, Rosenthal EA, et al. Genetic and nongenetic sources of variation in phospholipid transfer protein activity. J Lipid Res. 2010;51(5):983–90.

    Article  PubMed  CAS  Google Scholar 

  68. Moerland M, Samyn H, Van Gent T, et al. Acute elevation of plasma PLTP activity strongly increases pre-existing atherosclerosis. Arterioscler Thromb Vasc Biol. 2008;28(7):1277–82.

    Article  PubMed  CAS  Google Scholar 

  69. Luo Y, Shelly L, Sand T, et al. Pharmacologic inhibition of phospholipid transfer protein activity reduces apolipoprotein-B secretion from hepatocytes. J Pharmacol Exp Ther. 2010;332(3):1100–6.

    Article  PubMed  CAS  Google Scholar 

  70. Inazu A, Brown ML, Hesler CB, et al. Increased high-density lipoprotein levels caused by a common cholesteryl-ester transfer protein gene mutation. N Engl J Med. 1990;323(18):1234–8.

    Article  PubMed  CAS  Google Scholar 

  71. Barter PJ, Rye K-A. Cholesteryl ester transfer protein inhibition as a strategy to reduce cardiovascular risk. J Lipid Res. 2012;53(9):1755–66.

    Article  PubMed  CAS  Google Scholar 

  72. Zhong S, Sharp DS, Grove JS, et al. Increased coronary heart disease in Japanese-American men with mutation in the cholesteryl ester transfer protein gene despite increased HDL levels. J Clin Invest. 1996;97(12):2917–23.

    Article  PubMed  CAS  Google Scholar 

  73. Hirano K, Yamashita S, Nakajima N, et al. Genetic cholesteryl ester transfer protein deficiency is extremely frequent in the Omagari area of Japan. Marked hyperalphalipoproteinemia caused by CETP gene mutation is not associated with longevity. Arterioscler Thromb Vasc Biol. 1997;17(6):1053–9.

    Article  PubMed  CAS  Google Scholar 

  74. • Johannsen TH, Frikke-Schmidt R, Schou J, et al. Genetic inhibition of CETP, ischemic vascular disease and mortality, and possible adverse effects. J Am Coll Cardiol. 2012;60(20):2041–8. This is an interesting study in the light of recent CETP inhibitor drug development. This study showed a significant association between genetic inhibition of CETP and CVD risk.

    Article  PubMed  CAS  Google Scholar 

  75. Boekholdt SM, Sacks FM, Jukema JW, et al. Cholesteryl ester transfer protein TaqIB variant, high-density lipoprotein cholesterol levels, cardiovascular risk, and efficacy of pravastatin treatment: individual patient meta-analysis of 13,677 subjects. Circulation. 2005;111(3):278–87.

    Article  PubMed  CAS  Google Scholar 

  76. Thompson A, Di Angelantonio E, Sarwar N, et al. Association of cholesteryl ester transfer protein genotypes with CETP mass and activity, lipid levels, and coronary risk. JAMA. 2008;299(23):2777–88.

    Article  PubMed  CAS  Google Scholar 

  77. Ridker PM, Paré G, Parker AN, et al. Polymorphism in the CETP gene region, HDL cholesterol, and risk of future myocardial infarction: Genomewide analysis among 18 245 initially healthy women from the Women’s Genome Health Study. Circ Cardiovasc Genet. 2009;2(1):26–33.

    Article  PubMed  CAS  Google Scholar 

  78. Kathiresan S. Will cholesteryl ester transfer protein inhibition succeed primarily by lowering low-density lipoprotein cholesterol? Insights from human genetics and clinical trials. J Am Coll Cardiol. 2012;60(20):2049–52.

    Article  PubMed  CAS  Google Scholar 

  79. • Vergeer M, Korporaal SJA, Franssen R, et al. Genetic variant of the scavenger receptor BI in humans. N Engl J Med. 2011;364(2):136–45. This was the first study to report SR-B1 variants in humans associated with HDL-C and reduced macrophage cholesterol efflux.

    Article  PubMed  CAS  Google Scholar 

  80. Brunham LR, Tietjen I, Bochem AE, et al. Novel mutations in scavenger receptor BI associated with high HDL cholesterol in humans. Clin Genet. 2011;79(6):575–81.

    Article  PubMed  CAS  Google Scholar 

  81. Chadwick AC, Sahoo D. Functional characterization of newly-discovered mutations in human SR-BI. PLoS One. 2012;7(9):e45660.

    Article  PubMed  CAS  Google Scholar 

  82. Singaraja RR, Sivapalaratnam S, Hovingh K, et al. The impact of partial and complete loss of function mutations in endothelial lipase on HDL levels and functionality in humans. Circ Cardiovasc Genet. 2012. doi:10.1161/CIRCGENETICS.111.962613.

  83. Vergeer M, Cohn DM, Boekholdt SM, et al. Lack of association between common genetic variation in endothelial lipase (LIPG) and the risk for CAD and DVT. Atherosclerosis. 2010;211(2):558–64.

    Article  PubMed  CAS  Google Scholar 

  84. Edmondson AC, Brown RJ, Kathiresan S, et al. Loss-of-function variants in endothelial lipase are a cause of elevated HDL cholesterol in humans. J Clin Invest. 2009;119(4):1042–50.

    PubMed  CAS  Google Scholar 

  85. Jensen MK, Rimm EB, Mukamal KJ, et al. The T111I variant in the endothelial lipase gene and risk of coronary heart disease in three independent populations. Eur Heart J. 2009;30(13):1584–9.

    Article  PubMed  CAS  Google Scholar 

  86. Willer CJ, Sanna S, Jackson AU, et al. Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nat Genet. 2008;40(2):161–9.

    Article  PubMed  CAS  Google Scholar 

  87. Waterworth DM, Ricketts SL, Song K, et al. Genetic variants influencing circulating lipid levels and risk of coronary artery disease. Arterioscler Thromb Vasc Biol. 2010;30(11):2264–76.

    Article  PubMed  CAS  Google Scholar 

  88. Takeuchi F, Isono M, Katsuya T, et al. Association of genetic variants influencing lipid levels with coronary artery disease in Japanese individuals. PLoS One. 2012;7(9):e46385.

    Article  PubMed  CAS  Google Scholar 

  89. Chen X, Li S, Yang Y, et al. Genome-wide association study validation identifies novel loci for atherosclerotic cardiovascular disease. J Thromb Haemost. 2012;10(8):1508–14.

    Article  PubMed  CAS  Google Scholar 

  90. Small KS, Hedman AK, Grundberg E, et al. Identification of an imprinted master trans regulator at the KLF14 locus related to multiple metabolic phenotypes. Nat Genet. 2011;43(6):561–4.

    Article  PubMed  CAS  Google Scholar 

  91. Schunkert H, König IR, Kathiresan S, et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat Genet. 2011;43(4):333–8.

    Article  PubMed  CAS  Google Scholar 

  92. •• Deloukas P, Kanoni S, Willenborg C, et al. Large-scale association analysis identifies new risk loci for coronary artery disease. Nat Genet. 2012;45:25–33. This is the largest and most recent meta-analysis on the genetic background of coronary artery disease risk.

    Article  PubMed  Google Scholar 

  93. Van Eck M, Twisk J, Hoekstra M, et al. Differential effects of scavenger receptor BI deficiency on lipid metabolism in cells of the arterial wall and in the liver. J Biol Chem. 2003;278(26):23699–705.

    Article  PubMed  Google Scholar 

Download references

Conflict of Interest

Julian C. van Capelleveen declares no conflict of interest.

Andrea E. Bochem declares no conflict of interest.

Mahdi M. Motazacker declares no conflict of interest.

G. Kees Hovingh received payment for development of educational presentations from Pfizer and Genzyme.

John J. P. Kastelein is a consultant to AstraZeneca, Aegerion, Genzyme, Isis Pharmaceuticals, Boehringer-Ingelheim, Roche, Pfizer, Eli Lilly, Sanofi, MSD, Cerenis, Regeneron, and Novartis and has received payment for development of educational presentations from AstraZeneca, Aegerion, Genzyme, Isis Pharmaceuticals, Roche, Pfizer, Eli Lilly, MSD, and Cerenis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. P. Kastelein.

Additional information

This article is part of the Topical Collection on Genetics

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Capelleveen, J.C., Bochem, A.E., Motazacker, M.M. et al. Genetics of HDL-C: A Causal Link to Atherosclerosis?. Curr Atheroscler Rep 15, 326 (2013). https://doi.org/10.1007/s11883-013-0326-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11883-013-0326-8

Keywords

Navigation