Skip to main content

Advertisement

Log in

Homocysteine and atherothrombosis: Diagnosis and treatment

  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Hyperhomocysteinemia has long been recognized as a risk factor for cardiovascular disease. Many cross-sectional and retrospective case-control studies have shown an association between elevated total homocysteine levels and coronary, peripheral, and cerebral vascular disease; prospective studies, however, have been inconsistent. Overall, there is evidence to suggest a modest association between elevated homocysteine levels and cardiovascular disease risk. Folate supplementation has been shown to reduce plasma homocysteine even when levels are in the normal range. Clinical studies suggest that lowering plasma homocysteine may improve endothelial dysfunction, a marker of atherothrombotic risk. The long-term effects of folate supplementation on homocysteine levels and cardiovascular disease risk await the results of ongoing clinical trials. However, several recent studies suggest a benefit for reduction of plasma homocysteine levels, as individuals with lower homocysteine have reduced cardiovascular event rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. McCully KS: Vascular pathology of homocysteinemia: implications for the pathogenesis of arteriosclerosis. Am J Pathol 1969, 56:111–128.

    PubMed  CAS  Google Scholar 

  2. Wilcken DE, Wilcken B: The pathogenesis of coronary artery disease. A possible role for methionine metabolism. J Clin Invest 1976, 57:1079–1082.

    PubMed  CAS  Google Scholar 

  3. Boushey CJ, Beresford SA, Omenn GS, et al.: A quantitative assessment of plasma homocysteine as a risk factor for vascular disease. Probable benefits of increasing folic acid intakes. JAMA 1995, 274:1049–1057.

    Article  PubMed  CAS  Google Scholar 

  4. Selhub J: Homocysteine metabolism. Annu Rev Nutr 1999, 19:217–246.

    Article  PubMed  CAS  Google Scholar 

  5. Schneede J, Refsum H, Ueland PM: Biological and environmental determinants of plasma homocysteine. Sem Thromb Hemost 2000, 26:263–79.

    Article  CAS  Google Scholar 

  6. Ubbink JB: Assay methods for the measurement of total homocyst(e)ine in plasma. Sem Thromb Hemost 2000, 26:233–241.

    Article  CAS  Google Scholar 

  7. Ueland PM: Homocysteine species as components of plasma redox thiol status. Clin Chem 1995, 41:340–342.

    PubMed  CAS  Google Scholar 

  8. Wilcken DE, Wilcken B: The natural history of vascular disease in homocystinuria and the effects of treatment. J Inherit Metab Dis 1997, 20:295–300.

    Article  PubMed  CAS  Google Scholar 

  9. Rozen R: Genetic modulation of homocysteinemia. Sem Thromb Hemost 2000, 26:255–261.

    Article  CAS  Google Scholar 

  10. Kang SS, Zhou J, Wong PW, et al.: Intermediate homocysteinemia: a thermolabile variant of methylenetetrahydrofolate reductase. Am J Hum Genet 1988, 43:414–421.

    PubMed  CAS  Google Scholar 

  11. Jacques PF, Bostom AG, Williams RR, et al.: Relation between folate status, a common mutation in methylenetetrahydrofolate reductase, and plasma homocysteine concentrations. Circulation 1996, 93:7–9.

    PubMed  CAS  Google Scholar 

  12. Gaughan DJ, Kluijtmans LA, Barbaux S, et al.: The methionine synthase reductase (MTRR) A66G polymorphism is a novel genetic determinant of plasma homocysteine concentrations. Atherosclerosis 2001, 157:451–456.

    Article  PubMed  CAS  Google Scholar 

  13. Harmon DL, Shields DC, Woodside JV, et al.: Methionine synthase D919G polymorphism is a significant but modest determinant of circulating homocysteine concentrations. Genet Epidemiol 1999, 17:298–309.

    Article  PubMed  CAS  Google Scholar 

  14. Lievers KJ, Afman LA, Kluijtmans LA, et al.: Polymorphisms in the transcobalamin gene: association with plasma homocysteine in healthy individuals and vascular disease patients. Clin Chem 2002, 48:1383–1389.

    PubMed  CAS  Google Scholar 

  15. Selhub J, Jacques PF, Wilson PW, et al.: Vitamin status and intake as primary determinants of homocysteinemia in an elderly population. JAMA 1993, 270:2693–2698.

    Article  PubMed  CAS  Google Scholar 

  16. Desouza C, Keebler M, McNamara DB, et al.: Drugs affecting homocysteine metabolism: impact on cardiovascular risk. Drugs 2002, 62:605–616.

    Article  PubMed  CAS  Google Scholar 

  17. Stead LM, Au KP, Jacobs RL, et al.: Methylation demand and homocysteine metabolism: effects of dietary provision of creatine and guanidinoacetate. Am J Physiol Endocrinol Metab 2001, 281:E1095-E1100.

    PubMed  CAS  Google Scholar 

  18. Graham IM, Daly LE, Refsum HM, et al.: Plasma homocysteine as a risk factor for vascular disease. The European Concerted Action Project. JAMA 1997, 277:1775–1781.

    Article  PubMed  CAS  Google Scholar 

  19. Stampfer MJ, Malinow MR, Willett WC, et al.: A prospective study of plasma homocyst(e)ine and risk of myocardial infarction in US physicians. JAMA 1992, 268:877–881.

    Article  PubMed  CAS  Google Scholar 

  20. Chasan-Taber L, Selhub J, Rosenberg IH, et al.: A prospective study of folate and vitamin B6 and risk of myocardial infarction in US physicians. J Am Coll Nutr 1996, 15:136–143.

    PubMed  CAS  Google Scholar 

  21. Cleophas TJ, Hornstra N, van Hoogstraten B, et al.: Homocysteine, a risk factor for coronary artery disease or not? A meta-analysis. Am J Cardiol 2000, 86:1005–1009.

    Article  PubMed  CAS  Google Scholar 

  22. Bautista LE, Arenas IA, Penuela A, et al.: Total plasma homocysteine level and risk of cardiovascular disease: a meta-analysis of prospective cohort studies. J Clin Epidemiol 2002, 55:882–887.

    Article  PubMed  Google Scholar 

  23. Wald DS, Law M, Morris JK: Homocysteine and cardiovascular disease: evidence on causality from a meta-analysis. BMJ 2002, 325:1202.

    Article  PubMed  Google Scholar 

  24. Homocysteine and risk of ischemic heart disease and stroke: a meta-analysis. JAMA 2002, 288:2015–2022.

  25. Folsom AR, Nieto FJ, McGovern PG, et al.: Prospective study of coronary heart disease incidence in relation to fasting total homocysteine, related genetic polymorphisms, and B vitamins: the Atherosclerosis Risk in Communities (ARIC) study. Circulation 1998, 98:204–210.

    PubMed  CAS  Google Scholar 

  26. Wald NJ, Watt HC, Law MR, et al.: Homocysteine and ischemic heart disease: results of a prospective study with implications regarding prevention. Arch Intern Med 1998, 158:862–867.

    Article  PubMed  CAS  Google Scholar 

  27. Bostom AG, Silbershatz H, Rosenberg IH, et al.: Nonfasting plasma total homocysteine levels and all-cause and cardiovascular disease mortality in elderly Framingham men and women. Arch Intern Med 1999, 159:1077–1080.

    Article  PubMed  CAS  Google Scholar 

  28. Ridker PM, Shih J, Cook TJ, et al.: Plasma homocysteine concentration, statin therapy, and the risk of first acute coronary events. Circulation 2002, 105:1776–1779.

    Article  PubMed  CAS  Google Scholar 

  29. Ridker PM, Manson JE, Buring JE, et al.: Homocysteine and risk of cardiovascular disease among postmenopausal women. JAMA 1999, 281:1817–1821.

    Article  PubMed  CAS  Google Scholar 

  30. Knekt P, Alfthan G, Aromaa A, et al.: Homocysteine and major coronary events: a prospective population study amongst women. J Intern Med 2001, 249:461–465.

    Article  PubMed  CAS  Google Scholar 

  31. Knekt P, Reunanen A, Alfthan G, et al.: Hyperhomocystinemia: a risk factor or a consequence of coronary heart disease? Arch Intern Med 2001, 161:1589–1594.

    Article  PubMed  CAS  Google Scholar 

  32. Anderson JL, Muhlestein JB, Horne BD, et al.: Plasma homocysteine predicts mortality independently of traditional risk factors and C-reactive protein in patients with angiographically defined coronary artery disease. Circulation 2000, 102:1227–1232.

    PubMed  CAS  Google Scholar 

  33. Omland T, Samuelsson A, Hartford M, et al.: Serum homocysteine concentration as an indicator of survival in patients with acute coronary syndromes. Arch Intern Med 2000, 160:1834–1840.

    Article  PubMed  CAS  Google Scholar 

  34. Acevedo M, Pearce GL, Kottke-Marchant K, et al.: Elevated fibrinogen and homocysteine levels enhance the risk of mortality in patients from a high-risk preventive cardiology clinic. Arterioscler Thromb Vasc Biol 2002, 22:1042–1045.

    Article  PubMed  CAS  Google Scholar 

  35. Nygard O, Nordrehaug JE, Refsum H, et al.: Plasma homocysteine levels and mortality in patients with coronary artery disease. N Engl J Med 1997, 337:230–236.

    Article  PubMed  CAS  Google Scholar 

  36. Whincup PH, Refsum H, Perry IJ, et al.: Serum total homocysteine and coronary heart disease: prospective study in middle aged men. Heart 1999, 82:448–454.

    PubMed  CAS  Google Scholar 

  37. Stubbs PJ, Al-Obaidi MK, Conroy RM, et al.: Effect of plasma homocysteine concentration on early and late events in patients with acute coronary syndromes. Circulation 2000, 102:605–610.

    PubMed  CAS  Google Scholar 

  38. Ridker PM, Stampfer MJ, Rifai N: Novel risk factors for systemic atherosclerosis: a comparison of C-reactive protein, fibrinogen, homocysteine, lipoprotein(a), and standard cholesterol screening as predictors of peripheral arterial disease. JAMA 2001, 285:2481–2485.

    Article  PubMed  CAS  Google Scholar 

  39. Taylor LM Jr, Moneta GL, Sexton GJ, et al.: Prospective blinded study of the relationship between plasma homocysteine and progression of symptomatic peripheral arterial disease. J Vasc Surg 1999, 29:8–19.

    Article  PubMed  Google Scholar 

  40. Schnyder G, Roffi M, Flammer Y, et al.: Association of plasma homocysteine with restenosis after percutaneous coronary angioplasty. Eur Heart J 2002, 23:726–733.

    Article  PubMed  CAS  Google Scholar 

  41. Schnyder G, Flammer Y, Roffi M, et al.: Plasma homocysteine levels and late outcome after coronary angioplasty. J Am Coll Cardiol 2002, 40:1769–1776.

    Article  PubMed  CAS  Google Scholar 

  42. Zairis MN, Ambrose JA, Manousakis SJ, et al.: The impact of plasma levels of C-reactive protein, lipoprotein (a) and homocysteine on the long-term prognosis after successful coronary stenting: The Global Evaluation of New Events and Restenosis After Stent Implantation Study. J Am Coll Cardiol 2002, 40:1375–1382.

    Article  PubMed  CAS  Google Scholar 

  43. Frosst P, Blom HJ, Milos R, et al.: A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 1995, 10:111–113.

    Article  PubMed  CAS  Google Scholar 

  44. Kluijtmans LA, Kastelein JJ, Lindemans J, et al.: Thermolabile methylenetetrahydrofolate reductase in coronary artery disease. Circulation 1997, 96:2573–2577.

    PubMed  CAS  Google Scholar 

  45. Ma J, Stampfer MJ, Hennekens CH, et al.: Methylenetetrahydrofolate reductase polymorphism, plasma folate, homocysteine, and risk of myocardial infarction in US physicians. Circulation 1996, 94:2410–2416.

    PubMed  CAS  Google Scholar 

  46. Brattstrom L, Wilcken DE, Ohrvik J, et al.: Common methylenetetrahydrofolate reductase gene mutation leads to hyperhomocysteinemia but not to vascular disease: the result of a meta-analysis. Circulation 1998, 98:2520–2526.

    PubMed  CAS  Google Scholar 

  47. Klerk M, Verhoef P, Clarke R, et al.: MTHFR 677C→T polymorphism and risk of coronary heart disease: a meta-analysis. JAMA 2002, 288:2023–2031.

    Article  PubMed  CAS  Google Scholar 

  48. Domagala TB, Undas A, Libura M, et al.: Pathogenesis of vascular disease in hyperhomocysteinaemia. J Cardiovasc Risk 1998, 5:239–247.

    Article  PubMed  CAS  Google Scholar 

  49. Hofmann MA, Lalla E, Lu Y, et al.: Hyperhomocysteinemia enhances vascular inflammation and accelerates atherosclerosis in a murine model. J Clin Invest 2001, 107:675–683.

    PubMed  CAS  Google Scholar 

  50. Upchurch GR Jr, Welch GN, Fabian AJ, et al.: Homocyst(e)ine decreases bioavailable nitric oxide by a mechanism involving glutathione peroxidase. J Biol Chem 1997, 272:17012–17017.

    Article  PubMed  CAS  Google Scholar 

  51. Loscalzo J: The oxidant stress of hyperhomocyst(e)inemia. J Clin Invest 1996, 98:5–7.

    PubMed  CAS  Google Scholar 

  52. Lentz SR, Malinow MR, Piegors DJ, et al.: Consequences of hyperhomocyst(e)inemia on vascular function in atherosclerotic monkeys. Arterioscler Thromb Vasc Biol 1997, 17:2930–2934.

    PubMed  CAS  Google Scholar 

  53. Eberhardt RT, Forgione MA, Cap A, et al.: Endothelial dysfunction in a murine model of mild hyperhomocyst(e)inemia. J Clin Invest 2000, 106:483–491.

    Article  PubMed  CAS  Google Scholar 

  54. Weiss N, Zhang YY, Heydrick S, et al.: Overexpression of cellular glutathione peroxidase rescues homocyst(e)ine-induced endothelial dysfunction. Proc Natl Acad Sci U S A 2001, 98:12503–12508.

    Article  PubMed  CAS  Google Scholar 

  55. Ashfield-Watt PA, Moat SJ, Doshi SN, et al.: Folate, homocysteine, endothelial function and cardiovascular disease. What is the link? Biomed Pharmacother 2001, 55:425–433.

    Article  PubMed  CAS  Google Scholar 

  56. Schlaich MP, John S, Jacobi J, et al.: Mildly elevated homocysteine concentrations impair endothelium dependent vasodilatation in hypercholesterolemic patients. Atherosclerosis 2000, 153:383–389.

    Article  PubMed  CAS  Google Scholar 

  57. Yap S, Boers GH, Wilcken B, et al.: Vascular outcome in patients with homocystinuria due to cystathionine beta-synthase deficiency treated chronically: a multicenter observational study. Arterioscler Thromb Vasc Biol 2001, 21:2080–2085.

    PubMed  CAS  Google Scholar 

  58. Verhaar MC, Stroes E, Rabelink TJ: Folates and cardiovascular disease. Arterioscler Thromb Vasc Biol 2002, 22:6–13.

    Article  PubMed  CAS  Google Scholar 

  59. Clarke R, Armitage J: Vitamin supplements and cardiovascular risk: review of the randomized trials of homocysteine-lowering vitamin supplements. Sem Thromb Hemost 2000, 26:341–348.

    Article  CAS  Google Scholar 

  60. Venn BJ, Mann JI, Williams SM, et al.: Assessment of three levels of folic acid on serum folate and plasma homocysteine: a randomised placebo-controlled double-blind dietary intervention trial. Eur J Clin Nutr 2002, 56:748–754.

    Article  PubMed  CAS  Google Scholar 

  61. van Guldener C, Robinson K: Homocysteine and renal disease. Sem Thromb Hemost 2000, 26:313–324.

    Article  Google Scholar 

  62. Usui M, Matsuoka H, Miyazaki H, et al.: Endothelial dysfunction by acute hyperhomocyst(e)inaemia: restoration by folic acid. Clin Sci (Lond) 1999, 96:235–239.

    Article  CAS  Google Scholar 

  63. Bellamy MF, McDowell IF, Ramsey MW, et al.: Oral folate enhances endothelial function in hyperhomocysteinaemic subjects. Eur J Clin Invest 1999, 29:659–662.

    Article  PubMed  CAS  Google Scholar 

  64. Schnyder G, Roffi M, Pin R, et al.: Decreased rate of coronary restenosis after lowering of plasma homocysteine levels. N Engl J Med 2001, 345:1593–1600.

    Article  PubMed  CAS  Google Scholar 

  65. Schnyder G, Roffi M, Flammer Y, et al.: Effect of homocysteine-lowering therapy with folic acid, vitamin B(12), and vitamin B(6) on clinical outcome after percutaneous coronary intervention: the Swiss Heart study: a randomized controlled trial. JAMA 2002, 288:973–979.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Handy, D.E., Loscalzo, J. Homocysteine and atherothrombosis: Diagnosis and treatment. Curr Atheroscler Rep 5, 276–283 (2003). https://doi.org/10.1007/s11883-003-0050-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11883-003-0050-x

Keywords

Navigation