Skip to main content

Hyperhomocysteinemia, B-Vitamins, and Coronary Artery Disease Risk

  • Chapter
  • First Online:
Nutritional Management and Metabolic Aspects of Hyperhomocysteinemia

Abstract

Homocysteine (Hcy) is a sulfur-containing amino acid, which is produced during the metabolism of methionine. Impairment in one carbon metabolism (OCM) is believed to be responsible for elevated plasma homocysteine (Hcy) levels or hyperhomocysteinemia (HHcy), which is considered as an independent risk factor of coronary artery disease (CAD). There are multifactorial causes of HHcy including the genetic factors, polymorphisms of key OCM enzymes, particularly in case of nutritional deficiencies of certain B-vitamins (folate, riboflavin, vitamin B6 and B12), disease state, smoking and drugs. The association between plasma homocysteine levels and cardiovascular disease risk has spawned attention to develop strategies to lower plasma homocysteine levels that may improve the vascular disease-associated morbidity and mortality. The data derived largely from observational and cross-sectional studies as well as from some clinical trials indicate that elevated levels of circulating homocysteine (>12 μM/L) are cytotoxic and can cause vascular damage, increase the risk for developing atherothrombotic CAD, peripheral vascular disease, myocardial infarction, and stroke. Understanding the cellular mechanisms by which homocysteine promotes the oxidative stress-induced vascular dysfunction, has provided sufficient evidence to conduct clinical trials to lower homocysteine levels with B-vitamins as a novel therapeutic approach to patients with cardiovascular diseases. This chapter reviews the scientific evidence about the potential causes of hyperhomocysteinemia and its link as a risk factor in the pathobiology of CAD and the role of B-vitamin supplementation in the prevention of hyperhomocysteinemia-associated CAD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sbodio JI, Snyder SH, Paul BD (2019) Regulators of the transsulfuration pathway. Br J Pharmacol 176(4):583–593

    Article  CAS  PubMed  Google Scholar 

  2. Chai AU, Abrams J (2001) Homocysteine: a new cardiac risk factor? Clin Cardiol 24(1):80–84

    Article  CAS  PubMed  Google Scholar 

  3. Stanger O, Fowler B, Piertzik K, Huemer M, Haschke-Becher E, Semmler A et al (2009) Homocysteine, folate and vitamin B12 in neuropsychiatric diseases: review and treatment recommendations. Expert Rev Neurother 9(9):1393–1412

    Article  CAS  PubMed  Google Scholar 

  4. Bertoia ML, Pai JK, Cooke JP, Joosten MM, Mittleman MA, Rimm EB et al (2014) Plasma homocysteine, dietary B vitamins, betaine, and choline and risk of peripheral artery disease. Atherosclerosis 235(1):94–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. McMahon A, McNulty H, Hughes CF, Strain JJ, Ward M (2016) Novel approaches to investigate one-carbon metabolism and related B-vitamins in blood pressure. Nutrients 8(11):720

    Article  PubMed Central  CAS  Google Scholar 

  6. Cacciapuoti F (2011) Hyper-homocysteinemia: a novel risk factor or a powerful marker for cardiovascular diseases? Pathogenetic and therapeutical uncertainties. J Thromb Thrombolysis 32(1):82–88

    Article  CAS  PubMed  Google Scholar 

  7. Tinelli C, Di Pino A, Ficulle E, Marcelli S, Feligioni M (2019) Hyperhomocysteinemia as a risk factor and potential nutraceutical target for certain pathologies. Front Nutr 6:49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Austin RC, Lentz SR, Werstuck GH (2004) Role of hyperhomocysteinemia in endothelial dysfunction and atherothrombotic disease. Cell Death Differ 11(1):S56–S64

    Article  CAS  PubMed  Google Scholar 

  9. Waly MI, Ali A, Al-Nassri A, Al-Mukhaini M, Valliatte J, Al-Farsi Y (2016) Low nourishment of B-vitamins is associated with hyperhomocysteinemia and oxidative stress in newly diagnosed cardiac patients. Exp Biol Med (Maywood, NJ) 241(1):46–51

    Article  CAS  Google Scholar 

  10. van Guldener C, Stehouwer CD (2000) Hyperhomocysteinemia, vascular pathology, and endothelial dysfunction. Semin Thromb Hemost 26(3):281–289

    Article  PubMed  Google Scholar 

  11. Ganguly P, Alam SF (2015) Role of homocysteine in the development of cardiovascular disease. Nutr J 14:6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Rossi GP, Maiolino G, Seccia TM, Burlina A, Zavattiero S, Cesari M et al (2006) Hyperhomocysteinemia predicts total and cardiovascular mortality in high-risk women. J Hypertens 24(5):851–859

    Article  CAS  PubMed  Google Scholar 

  13. Stanger O, Herrmann W, Pietrzik K, Fowler B, Geisel J, Dierkes J et al (2004) Clinical use and rational management of homocysteine, folic acid, and B vitamins in cardiovascular and thrombotic diseases. Z Kardiol 93(6):439–453

    Article  CAS  PubMed  Google Scholar 

  14. Stanger O, Herrmann W, Pietrzik K, Fowler B, Geisel J, Dierkes J et al (2003) DACH-LIGA homocystein (german, austrian and swiss homocysteine society): consensus paper on the rational clinical use of homocysteine, folic acid and B-vitamins in cardiovascular and thrombotic diseases: guidelines and recommendations. Clin Chem Lab Med 41(11):1392–1403

    CAS  PubMed  Google Scholar 

  15. Mazza A, Cuppini S, Schiavon L, Zuin M, Ravenni R, Balbi G et al (2014) Hyperhomocysteinemia is an independent predictor of sub-clinical carotid vascular damage in subjects with grade-1 hypertension. Endocrine 46(2):340–346

    Article  CAS  PubMed  Google Scholar 

  16. Liu C, Yang Y, Peng D, Chen L, Luo J (2015) Hyperhomocysteinemia as a metabolic disorder parameter is independently associated with the severity of coronary heart disease. Saudi Med J 36(7):839–846

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sabio JM, Vargas-Hitos JA, Martinez-Bordonado J, Navarrete-Navarrete N, Díaz-Chamorro A, Olvera-Porcel C et al (2014) Relationship between homocysteine levels and hypertension in systemic lupus erythematosus. Arthritis Care Res 66(10):1528–1535

    Article  CAS  Google Scholar 

  18. Lehotský J, Tothová B, Kovalská M, Dobrota D, Beňová A, Kalenská D et al (2016) Role of homocysteine in the ischemic stroke and development of ischemic tolerance. Front Neurosci 10:538

    Article  PubMed  PubMed Central  Google Scholar 

  19. Girelli D, Martinelli N, Olivieri O, Pizzolo F, Friso S, Faccini G et al (2006) Hyperhomocysteinemia and mortality after coronary artery bypass grafting. PLoS One 1(1):e83-e

    Article  CAS  Google Scholar 

  20. Vedanthan R, Seligman B, Fuster V (2014) Global perspective on acute coronary syndrome: a burden on the young and poor. Circ Res 114(12):1959–1975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mirdamadi A, Farzamnia H, Varzandeh P, Almasi N, Arasteh M (2011) Association between serum homocysteine concentration with coronary artery disease in Iranian patients. ARYA Atheroscler 7(2):63–67

    PubMed  PubMed Central  Google Scholar 

  22. Shenoy V, Mehendale V, Prabhu K, Shetty R, Rao P (2014) Correlation of serum homocysteine levels with the severity of coronary artery disease. Indian J Clin Biochem 29(3):339–344

    Article  CAS  PubMed  Google Scholar 

  23. Park S, Park G-M, Ha J, Cho Y-R, Roh J-H, Park EJ et al (2020) Homocysteine is not a risk factor for subclinical coronary atherosclerosis in asymptomatic individuals. PLoS One 15(4):e0231428-e

    Article  CAS  Google Scholar 

  24. Aggarwal A, Srivastava S, Velmurugan M (2016) Newer perspectives of coronary artery disease in young. World J Cardiol 8(12):728–734

    Article  PubMed  PubMed Central  Google Scholar 

  25. Martí-Carvajal AJ, Solà I, Lathyris D, Dayer M (2017) Homocysteine-lowering interventions for preventing cardiovascular events. Cochrane Database Syst Rev 8(8):CD006612

    PubMed  Google Scholar 

  26. Maron BA, Loscalzo J (2009) The treatment of hyperhomocysteinemia. Annu Rev Med 60(1):39–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shah H, Jan MU, Altaf A, Salahudin M (2018) Correlation of hyper-homocysteinemia with coronary artery disease in absence of conventional risk factors among young adults. J Saudi Heart Assoc 30(4):305–310

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gauthier GM, Keevil JG, McBride PE (2003) The association of homocysteine and coronary artery disease. Clin Cardiol 26(12):563–568

    Article  PubMed  Google Scholar 

  29. Cleophas TJ, Hornstra N, van Hoogstraten B, van der Meulen J (2000) Homocysteine, a risk factor for coronary artery disease or not? A meta-analysis. Am J Cardiol 86(9):1005–9, a8

    Article  CAS  PubMed  Google Scholar 

  30. Booth GL, Wang EE (2000) Preventive health care, 2000 update: screening and management of hyperhomocysteinemia for the prevention of coronary artery disease events. The Canadian Task Force on Preventive Health Care. Can Med Assoc J 163(1):21–29

    CAS  Google Scholar 

  31. Cavalca V, Cighetti G, Bamonti F, Loaldi A, Bortone L, Novembrino C et al (2001) Oxidative stress and homocysteine in coronary artery disease. Clin Chem 47(5):887–892

    Article  CAS  PubMed  Google Scholar 

  32. Vesentini N, Kusmic C, Battaglia D, Taddei MC, Barsanti L, Parodi O et al (2008) Modulation of erythrocyte sensitivity to oxidative stress by transient hyperhomocysteinemia in healthy subjects and in patients with coronary artery disease. Nutr Metab Cardiovasc Dis 18(6):402–407

    Article  CAS  PubMed  Google Scholar 

  33. Karunathilake SP, Ganegoda GU (2018) Secondary prevention of cardiovascular diseases and application of technology for early diagnosis. Biomed Res Int 2018:5767864

    Article  PubMed  PubMed Central  Google Scholar 

  34. Peng H-y, Man C-f, Xu J, Fan Y (2015) Elevated homocysteine levels and risk of cardiovascular and all-cause mortality: a meta-analysis of prospective studies. J Zhejiang Univ Sci B 16(1):78–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Seshadri N, Robinson K (2000) Homocysteine, B Vitamins, and coronary artery disease. Med Clin N Am 84(1):215–237

    Article  CAS  PubMed  Google Scholar 

  36. Stanger O, Weger M (2003) Interactions of homocysteine, nitric oxide, folate and radicals in the progressively damaged endothelium. Clin Chem Lab Med 41(11):1444–1454

    CAS  PubMed  Google Scholar 

  37. Zhang C, Chi F-L, Xie T-H, Zhou Y-H (2013) Effect of B-vitamin supplementation on stroke: a meta-analysis of randomized controlled trials. PLoS One 8(11):e81577-e

    Article  CAS  Google Scholar 

  38. Antoniades C, Antonopoulos AS, Tousoulis D, Marinou K, Stefanadis C (2009) Homocysteine and coronary atherosclerosis: from folate fortification to the recent clinical trials. Eur Heart J 30(1):6–15

    Article  CAS  PubMed  Google Scholar 

  39. Kennedy DO (2016) B vitamins and the brain: mechanisms, dose and efficacy – a review. Nutrients 8(2):68

    Google Scholar 

  40. Ford TC, Downey LA, Simpson T, McPhee G, Oliver C, Stough C (2018) The effect of a high-dose vitamin B multivitamin supplement on the relationship between brain metabolism and blood biomarkers of oxidative stress: a randomized control trial. Nutrients 10(12):1860

    Article  PubMed Central  CAS  Google Scholar 

  41. Woo KS, Qiao M, Chook P, Poon PY, Chan AK, Lau JT et al (2002) Homocysteine, endothelial dysfunction, and coronary artery disease: emerging strategy for secondary prevention. J Card Surg 17(5):432–435

    Article  PubMed  Google Scholar 

  42. Pandey R, Gupta S, Lal H, Mehta HC, Aggarwal SK (2000) Hyperhomocysteinemia and cardiovascular disease: the nutritional perspectives. Indian J Clin Biochem 15(Suppl 1):20–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ma Y, Peng D, Liu C, Huang C, Luo J (2017) Serum high concentrations of homocysteine and low levels of folic acid and vitamin B12 are significantly correlated with the categories of coronary artery diseases. BMC Cardiovasc Disord 17(1):37

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Verhoef P, Kok Frans J, Kruyssen Dick ACM, Schouten Evert G, Witteman Jacqueline CM, Grobbee Diederick E et al (1997) Plasma total homocysteine, B vitamins, and risk of coronary atherosclerosis. Arterioscler Thromb Vasc Biol 17(5):989–995

    Article  CAS  PubMed  Google Scholar 

  45. Verhoef P, Stampfer MJ, Buring JF, Gaziano JM, Allen RH, Stabler SP et al (1996) Homocysteine metabolism and risk of myocardial infarction: relation with vitamins B6, B12, and folate. Am J Epidemiol 143(9):845–859

    Article  CAS  PubMed  Google Scholar 

  46. Ntaios G, Savopoulos C, Grekas D, Hatzitolios A (2009) The controversial role of B-vitamins in cardiovascular risk: an update. Arch Cardiovasc Dis 102(12):847–854

    Article  PubMed  Google Scholar 

  47. Ciaccio M, Bellia C (2010) Hyperhomocysteinemia and cardiovascular risk: effect of vitamin supplementation in risk reduction. Curr Clin Pharmacol 5(1):30–36

    Article  CAS  PubMed  Google Scholar 

  48. Wang X, Qin X, Demirtas H, Li J, Mao G, Huo Y et al (2007) Efficacy of folic acid supplementation in stroke prevention: a meta-analysis. Lancet (London, England) 369(9576):1876–1882

    Article  CAS  Google Scholar 

  49. Mujawar SA, Patil VW, Daver RG (2011) Study of serum homocysteine, folic Acid and vitamin B(12) in patients with preeclampsia. Indian J Clin Biochem 26(3):257–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chen KJ, Pan WH, Yang FL, Wei IL, Shaw NS, Lin BF (2005) Association of B vitamins status and homocysteine levels in elderly Taiwanese. Asia Pac J Clin Nutr 14(3):250–255

    CAS  PubMed  Google Scholar 

  51. Krishnaswamy K, Lakshmi AV (2002) Role of nutritional supplementation in reducing the levels of homocysteine. J Assoc Physicians India 50(Suppl):36–42

    PubMed  Google Scholar 

  52. McKay DL, Perrone G, Rasmussen H, Dallal G, Blumberg JB (2000) Multivitamin/mineral supplementation improves plasma B-vitamin status and homocysteine concentration in healthy older adults consuming a folate-fortified diet. J Nutr 130(12):3090–3096

    Article  CAS  PubMed  Google Scholar 

  53. Schnyder G, Roffi M, Flammer Y, Pin R, Hess OM (2002) Effect of homocysteine-lowering therapy with folic acid, vitamin B12, and vitamin B6 on clinical outcome after percutaneous coronary intervention: the Swiss Heart study: a randomized controlled trial. JAMA 288(8):973–979

    Article  CAS  PubMed  Google Scholar 

  54. Huang T, Chen Y, Yang B, Yang J, Wahlqvist ML, Li D (2012) Meta-analysis of B vitamin supplementation on plasma homocysteine, cardiovascular and all-cause mortality. Clin Nutr (Edinburgh, Scotland) 31(4):448–454

    Article  CAS  Google Scholar 

  55. Lange H, Suryapranata H, De Luca G, Börner C, Dille J, Kallmayer K et al (2004) Folate therapy and in-stent restenosis after coronary stenting. N Engl J Med 350(26):2673–2681

    Article  CAS  PubMed  Google Scholar 

  56. Genser D, Prachar H, Hauer R, Halbmayer WM, Mlczoch J, Elmadfa I (2002) Relation of homocysteine, vitamin B(12), and folate to coronary in-stent restenosis. Am J Cardiol 89(5):495–499

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanat Ali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ali, A., Waly, M.I., Sadiq, M.A. (2021). Hyperhomocysteinemia, B-Vitamins, and Coronary Artery Disease Risk. In: Waly, M.I. (eds) Nutritional Management and Metabolic Aspects of Hyperhomocysteinemia. Springer, Cham. https://doi.org/10.1007/978-3-030-57839-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57839-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57838-1

  • Online ISBN: 978-3-030-57839-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics