Skip to main content

Role of Homocysteine Metabolism in Cardiovascular Diseases

  • Chapter
  • First Online:
Homocysteine Metabolism in Health and Disease

Abstract

Homocysteine is a methyl group metabolic intermediate that requires numerous B-vitamin cofactors in the diet to function properly. The relationship between homocysteine metabolism and health and disease is becoming more well-known. Homocysteine metabolism disturbances, primarily intracellular and subsequent circulatory homocysteine buildup (hyperhomocysteinemia), are linked to vascular disease risk and other diseases. On the other hand, B-vitamin treatment has successfully restored average homocysteine concentrations without corresponding decreases in disease risk. As a result, researchers are still investigating the molecular link between homocysteine equilibrium and disease states and the efficacy of homocysteine regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Referencess

  • Akar N, Akar E, Misirlioğlu M, Avcu F, Yalçin A, Cin Ş (1998) Search for genetic factors favoring thrombosis in Turkish population. Thromb Res 92(2):79–82. https://doi.org/10.1016/S0049-3848(98)00113-3

    Article  CAS  PubMed  Google Scholar 

  • Alhenc-Gelas M, Arnaud E, Nicaud V, Aubry M, Fiessinger J, Aiach M, Emmerich J (1999) Venous thromboembolic disease and the prothrombin, methylene tetrahydrofolate reductase and factor V genes. Thromb Haemost 81(4):506–510

    Article  CAS  PubMed  Google Scholar 

  • Anderson JL, King GJ, Thomson MJ, Todd M, Bair TL, Muhlestein JB, Carlquist JF (1997) A mutation in the methylenetetrahydrofolate reductase gene is not associated with increased risk for coronary artery disease or myocardial infarction. J Am Coll Cardiol 30(5):1206–1211

    Article  CAS  PubMed  Google Scholar 

  • Arai K, Yamasaki Y, Kajimoto Y, Watada H, Umayahara Y, Kodama M, Sakamoto K, Hori M (1997) Association of Methylenetetrahydrofolate Reductase Gene Polymorphism with Carotid Arterial Wall Thickening and Myocardial Infarction Risk in NIDDM. Diabetes 46(12):2102–2104. https://doi.org/10.2337/diab.46.12.2102

    Article  CAS  PubMed  Google Scholar 

  • Arnadottir M, Hultberg B, Nilsson-Ehle P, Thysell H (1996) The effect of reduced glomerular filtration rate on plasma total homocysteine concentration. Scand J Clin Lab Invest 56(1):41–46

    Article  CAS  PubMed  Google Scholar 

  • Arruda VR, von Zuben PM, Chiaparini LC, Annichino-Bizzacchi JM, Costa FF (1997) The mutation Ala677→ Val in the methylene tetrahydrofolate reductase gene: a risk factor for arterial disease and venous thrombosis. Thromb Haemost 77(05):0818–0821

    Article  CAS  Google Scholar 

  • Bellamy MF, McDowell IF, Ramsey MW, Brownlee M, Newcombe RG, Lewis MJ (1999) Oral folate enhances endothelial function in hyperhomocysteinaemic subjects. Eur J Clin Investig 29(8):659–662. https://doi.org/10.1046/j.1365-2362.1999.00527.x

    Article  CAS  Google Scholar 

  • Bergmark C, Mansoor MA, Swedenborg J, de Faire U, Svardal AM, Ueland PM (1993) Hyperhomocysteinemia in patients operated for lower extremity ischaemia below the age of 50—effect of smoking and extent of disease. Eur J Vasc Surg 7(4):391–396

    Article  CAS  PubMed  Google Scholar 

  • Boers GH, Smals AG, Trijbels FJ, Fowler B, Bakkeren JA, Schoonderwaldt HC, Kleijer WJ, Kloppenborg PW (1985) Heterozygosity for homocystinuria in premature peripheral and cerebral occlusive arterial disease. N Engl J Med 313(12):709–715

    Article  CAS  PubMed  Google Scholar 

  • Bostom A, Brosnan JT, Hall B, Nadeau MR, Selhub J (1995) Net uptake of plasma homocysteine by the rat kidney in vivo. Atherosclerosis 116(1):59–62. https://doi.org/10.1016/0021-9150(95)05522-X

    Article  CAS  PubMed  Google Scholar 

  • Bostom AG, Bausserman L, Jacques PF, Liaugaudas G, Selhub J, Rosenberg IH (1999a) Cystatin C as a determinant of fasting plasma total homocysteine levels in coronary artery disease patients with normal serum creatinine. Arterioscler Thromb Vasc Biol 19(9):2241–2244

    Article  CAS  PubMed  Google Scholar 

  • Bostom AG, Gohh RY, Bausserman L, Hakas D, Jacques PF, Selhub J, Dworkin L, Rosenberg IH (1999b) Serum cystatin C as a determinant of fasting Total homocysteine levels in renal transplant recipients with a Normal serum creatinine. J Am Soc Nephrol 10(1):164–166. https://doi.org/10.1681/ASN.V101164

    Article  CAS  PubMed  Google Scholar 

  • Bostom AG, Lathrop L (1997) Hyperhomocysteinemia in end-stage renal disease: prevalence, etiology, and potential relationship to arteriosclerotic outcomes. Kidney Int 52(1):10–20. https://doi.org/10.1038/ki.1997.298

    Article  CAS  PubMed  Google Scholar 

  • Boushey CJ, Beresford SA, Omenn GS, Motulsky AG (1995) A quantitative assessment of plasma homocysteine as a risk factor for vascular disease: probable benefits of increasing folic acid intakes. JAMA 274(13):1049–1057

    Article  CAS  PubMed  Google Scholar 

  • Brattström L (1996) Vitamins as homocysteine-lowering agents. J Nutr 126(suppl_4):1276S–1280S

    Article  PubMed  Google Scholar 

  • Brattström L, Israelsson B, Norrving B, Bergqvist D, Thörne J, Hultberg B, Hamfelt A (1990) Impaired homocysteine metabolism in early-onset cerebral and peripheral occlusive arterial disease effects of pyridoxine and folic acid treatment. Atherosclerosis 81(1):51–60

    Article  PubMed  Google Scholar 

  • Brattström L, Lindgren A, Israelsson B, Andersson A, Hultberg B (1994) Homocysteine and cysteine: determinants of plasma levels in middle-aged and elderly subjects. J Intern Med 236(6):633–641. https://doi.org/10.1111/j.1365-2796.1994.tb00856.x

    Article  PubMed  Google Scholar 

  • Brattström L, Lindgren A, Israelsson B, Malinow MR, Norrving B, Upson B, Hamfelt A (1992) Hyperhomocysteinaemia in stroke: prevalence, cause, and relationships to type of stroke and stroke risk factors. Eur J Clin Investig 22(3):214–221

    Article  Google Scholar 

  • Brattström L, Wilcken DE, Ohrvik J, Brudin L (1998) Common methylenetetrahydrofolate reductase gene mutation leads to hyperhomocysteinemia but not to vascular disease: the result of a meta-analysis. Circulation 98(23):2520–2526

    Article  PubMed  Google Scholar 

  • Brown K, Luddington R, Baglin T (1998) Effect of the MTHFRC677T variant on risk of venous thromboembolism: interaction with factor V Leiden and prothrombin (F2G20210A) mutations. Br J Haematol 103(1):42–44. https://doi.org/10.1046/j.1365-2141.1998.00935.x

    Article  CAS  PubMed  Google Scholar 

  • Carey MC, Donovan DE, FitzGerald O, McAuley FD (1968) Homocystinuria: I. a clinical and pathological study of nine subjects in six families. Am J Med 45(1):7–25

    Article  CAS  PubMed  Google Scholar 

  • Carson NAJ, Dent CE, Field CMB, Gaull GE (1965) Homocystinuria: clinical and pathological review of ten cases. J Pediatr 66(3):565–583

    Article  CAS  PubMed  Google Scholar 

  • Cattaneo M, Tsai MY, Bucciarelli P, Taioli E, Zighetti ML, Bignell M, Mannucci PM (1997) A common mutation in the methylenetetrahydrofolate reductase gene (C677T) increases the risk for deep-vein thrombosis in patients with mutant factor V (factor V: Q506). Arterioscler Thromb Vasc Biol 17(9):1662–1666

    Article  CAS  PubMed  Google Scholar 

  • Celermajer DS, Sorensen K, Ryalls M, Robinson J, Thomas O, Leonard JV, Deanfield JE (1993) Impaired endothelial function occurs in the systemic arteries of children with homozygous homocystinuria but not in their heterozygous parents. J Am Coll Cardiol 22(3):854–858

    Article  CAS  PubMed  Google Scholar 

  • Chambers JC, McGregor A, Jean-Marie J, Obeid OA, Kooner JS (1999) Demonstration of rapid onset vascular endothelial dysfunction after hyperhomocysteinemia: an effect reversible with vitamin C therapy. Circulation 99(9):1156–1160

    Article  CAS  PubMed  Google Scholar 

  • Clarke R, Collins R (1998) Can dietary supplements with folic acid or vitamin B6 reduce cardiovascular risk? Design of clinical trials to test the homocysteine hypothesis of vascular disease. J Cardiovasc Risk 5(4):249–255

    Article  CAS  PubMed  Google Scholar 

  • Clarke R, Daly L, Robinson K, Naughten E, Cahalane S, Fowler B, Graham I (1991) Hyperhomocysteinemia: an independent risk factor for vascular disease. N Engl J Med 324(17):1149–1155

    Article  CAS  PubMed  Google Scholar 

  • Cochran FB, Packman S (1992) Homocystinuria presenting as sagittal sinus thrombosis. Eur Neurol 32(1):1–3

    Article  CAS  PubMed  Google Scholar 

  • Dalery K, Lussier-Cacan S, Selhub J, Davignon J, Latour Y, Genest J Jr (1995) Homocysteine and coronary artery disease in French Canadian subjects: relation with vitamins B12, B6, pyridoxal phosphate, and folate. Am J Cardiol 75(16):1107–1111

    Article  CAS  PubMed  Google Scholar 

  • Davies MJ (1996) Stability and instability: two faces of coronary atherosclerosis: the Paul Dudley White lecture 1995. Circulation 94(8):2013–2020

    Article  CAS  PubMed  Google Scholar 

  • Deloughery TG, Evans A, Sadeghi A, McWilliams J, Henner WD, Taylor LM, Press RD (1996) Common mutation in methylenetetrahydrofolate reductase. Circulation 94(12):3074–3078. https://doi.org/10.1161/01.CIR.94.12.3074

    Article  CAS  PubMed  Google Scholar 

  • Demuth K, Moatti N, Hanon O, Benoit MO, Safar M, Girerd X (1998) Opposite effects of plasma homocysteine and the methylenetetrahydrofolate reductase C677T mutation on carotid artery geometry in asymptomatic adults. Arterioscler Thromb Vasc Biol 18(12):1838–1843. https://doi.org/10.1161/01.ATV.18.12.1838

    Article  CAS  PubMed  Google Scholar 

  • Den Heijer M, Gerrits WBJ, Haak HL, Wijermans PW, Bos GMJ, Blom HJ, Rosendaal FR (1995) Is hyperhomocysteinaemia a risk factor for recurrent venous thrombosis? Lancet 345(8954):882–885

    Article  Google Scholar 

  • Dunn HG, Perry TL, Dolman CL (1966) Homocystinuria. A recently discovered cause of mental defect and cerebrovascular thrombosis. Neurology 16:407–420

    Article  CAS  PubMed  Google Scholar 

  • Dunn J, Title LM, Bata I, Johnstone DE, Kirkland SA, O’Neill BJ, Zayed E, MacDonald MC, Dempsey GI, Nassar BA (1998) Relation of a common mutation in methylenetetrahydrofolate reductase to plasma homocysteine and early onset coronary artery disease. Clin Biochem 31(2):95–100. https://doi.org/10.1016/S0009-9120(97)00165-3

    Article  CAS  PubMed  Google Scholar 

  • Eichinger S, Stümpflen A, Hirschl M, Bialonczyk C, Herkner K, Stain M, Schneider B, Pabinger I, Lechner K, Kyrle PA (2017) Hyperhomocysteinemia is a risk factor of recurrent venous thromboembolism. Thromb Haemost 80(10):566–569

    Google Scholar 

  • Fijnheer R, Roest M, Haas F, De Groot P, Derksen R (1998) Homocysteine, methylenetetrahydrofolate reductase polymorphism, antiphospholipid antibodies, and thromboembolic events in systemic lupus erythematosus: a retrospective cohort study. J Rheumatol 25(9):1737–1742

    CAS  PubMed  Google Scholar 

  • Fliser D, Ritz E (1998) Relationship between hypertension and renal function and its therapeutic implications in the elderly. Gerontology 44(3):123–131. https://doi.org/10.1159/000021995

    Article  CAS  PubMed  Google Scholar 

  • Folsom AR, Nieto FJ, McGovern PG, Tsai MY, Malinow MR, Eckfeldt JH, Hess DL, Davis CE (1998) Prospective study of coronary heart disease incidence in relation to fasting Total homocysteine, related genetic polymorphisms, and B vitamins. Circulation 98(3):204–210. https://doi.org/10.1161/01.CIR.98.3.204

    Article  CAS  PubMed  Google Scholar 

  • Ford ES, Byers TE, Giles WH (1998) Serum folate and chronic disease risk: findings from a cohort of United States adults. Int J Epidemiol 27(4):592–598

    Article  CAS  PubMed  Google Scholar 

  • Franco RF, Morelli V, Lourenco D, Maffei FH, Tavella MH, Piccinato CE, Thomazini IA, Zago MA (1999) A second mutation in the methylenetetrahydrofolate reductase gene and the risk of venous thrombotic disease. Br J Haematol 105(2):556–559

    Article  CAS  PubMed  Google Scholar 

  • Gardemann A, Weidemann H, Philipp M, Katz N, Tillmanns H, Wilhelm Hehrlein F, Haberbosch W (1999) The TT genotype of the methylenetetrahydrofolate reductase C677T gene polymorphism is associated with the extent of coronary atherosclerosis in patients at high risk for coronary artery disease. Eur Heart J 20(8):584–592. https://doi.org/10.1053/euhj.1998.1340

    Article  CAS  PubMed  Google Scholar 

  • Gaull GE (1967) The pathogenesis of homocystinuria: implications for treatment. Am J Dis Child 113(1):103–108

    Article  CAS  PubMed  Google Scholar 

  • Gemmati D, Previati M, Serino ML, Moratelli S, Guerra S, Capitani S, Forini E, Ballerini G, Scapoli GL (1999) Low folate levels and thermolabile methylenetetrahydrofolate reductase as primary determinant of mild Hyperhomocystinemia in Normal and thromboembolic subjects. Arterioscler Thromb Vasc Biol 19(7):1761–1767. https://doi.org/10.1161/01.ATV.19.7.1761

    Article  CAS  PubMed  Google Scholar 

  • Gibson JB, Carson NA, Neill DW (1964) Pathological findings in homocystinuria. J Clin Pathol 17(4):427–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giles WH, Croft JB, Greenlund KJ, Ford ES, Kittner SJ (1998a) Total homocyst(e)ine concentration and the likelihood of nonfatal stroke: results from the Third National Health and Nutrition Examination Survey, 1988–1994. Stroke 29(12):2473–2477

    Article  CAS  PubMed  Google Scholar 

  • Giles WH, Kittner SJ, Anda RF, Croft JB, Casper ML (1995) Serum folate and risk for ischemic stroke: first National Health and nutrition examination survey epidemiologic follow-up study. Stroke 26(7):1166–1170

    Article  CAS  PubMed  Google Scholar 

  • Giles WH, Kittner SJ, Croft JB, Anda RF, Casper ML, Ford ES (1998b) Serum folate and risk for coronary heart disease: results from a cohort of US adults. Ann Epidemiol 8(8):490–496

    Article  CAS  PubMed  Google Scholar 

  • Girelli D, Friso S, Trabetti E, Olivieri O, Russo C, Pessotto R, Faccini G, Pignatti PF, Mazzucco A, Corrocher R (1998) Methylenetetrahydrofolate reductase C677T mutation, plasma homocysteine, and folate in subjects from northern Italy with or without angiographically documented severe coronary atherosclerotic disease: evidence for an important genetic-environmental interaction. Blood 91(11):4158–4163

    Article  CAS  PubMed  Google Scholar 

  • Glueck CJ, Shaw P, Lang JE, Tracy T, Sieve-Smith L, Wang Y (1995) Evidence that homocysteine is an independent risk factor for atherosclerosis in hyperlipidemic patients. Am J Cardiol 75(2):132–136

    Article  CAS  PubMed  Google Scholar 

  • Graham IM, Daly LE, Refsum HM, Robinson K, Brattström LE, Ueland PM, Palma-Reis RJ, Boers GHJ, Sheahan RG, Israelsson B, Uiterwaal CS, Meleady R, McMaster D, Verhoef P, Witteman J, Rubba P, Bellet H, Wautrecht JC, de Valk HW, Sales Lúis AC, Parrot-Roulaud FM, Tan KS, Higgins I, Garcon D, Medrano MJ, Candito M, Evans AE, Andria G (1997) Plasma homocysteine as a risk factor for vascular disease: the European concerted action project. JAMA 277(22):1775–1781. https://doi.org/10.1001/jama.1997.03540460039030

    Article  CAS  PubMed  Google Scholar 

  • Guttormsen AB, Ueland PM, Svarstad E, Refsum H (1997) Kinetic basis of hyperhomocysteinemia in patients with chronic renal failure. Kidney Int 52(2):495–502. https://doi.org/10.1038/ki.1997.359

    Article  CAS  PubMed  Google Scholar 

  • Harmon DL, Doyle RM, Meleady R, Doyle M, Shields DC, Barry R, Coakley D, Graham IM, Whitehead AS (1999) Genetic analysis of the thermolabile variant of 5,10-methylenetetrahydrofolate reductase as a risk factor for ischemic stroke. Arterioscler Thromb Vasc Biol 19(2):208–211. https://doi.org/10.1161/01.ATV.19.2.208

    Article  CAS  PubMed  Google Scholar 

  • Hoogeveen EK, Kostense PJ, Beks PJ, Mackaay AJC, Jakobs C, Bouter LM, Heine RJ, Stehouwer CDA (1998) Hyperhomocysteinemia is associated with an increased risk of cardiovascular disease, especially in non–insulin-dependent diabetes mellitus. Arterioscler Thromb Vasc Biol 18(1):133–138. https://doi.org/10.1161/01.ATV.18.1.133

    Article  CAS  PubMed  Google Scholar 

  • Hopkins I, Townley RR, Shipman RT (1969) Cerebral thrombosis in a patient with homocystinuria. J Pediatr 75(6):1082–1083

    CAS  PubMed  Google Scholar 

  • Hopkins PN, Wu LL, Wu J, Hunt SC, James BC, Vincent GM, Williams RR (1995) Higher plasma homocyst (e) ine and increased susceptibility to adverse effects of low folate in early familial coronary artery disease. Arterioscler Thromb Vasc Biol 15(9):1314–1320

    Article  CAS  PubMed  Google Scholar 

  • James TN, Carson NA, Froggatt P (1974) De Subitaneis Mortibus: IV. Coronary vessels and conduction system in homocystinuria. Circulation 49(2):367–374

    Article  CAS  PubMed  Google Scholar 

  • Kanani PM, Sinkey CA, Browning RL, Allaman M, Knapp HR, Haynes WG (1999) Role of oxidant stress in endothelial dysfunction produced by experimental hyperhomocyst(e)inemia in humans. Circulation 100(11):1161–1168

    Article  CAS  PubMed  Google Scholar 

  • Kang S-S, Wong PW, Norusis M (1987) Homocysteinemia due to folate deficiency. Metabolism 36(5):458–462

    Article  CAS  PubMed  Google Scholar 

  • Kasiske BL (1987) Relationship between vascular disease and age–associated changes in the human kidney. Kidney Int 31(5):1153–1159. https://doi.org/10.1038/ki.1987.122

    Article  CAS  PubMed  Google Scholar 

  • Klag MJ, Whelton PK, Randall BL, Neaton JD, Brancati FL, Ford CE, Shulman NB, Stamler J (1996) Blood pressure and end-stage renal disease in men. N Engl J Med 334(1):13–18. https://doi.org/10.1056/NEJM199601043340103

    Article  CAS  PubMed  Google Scholar 

  • Kluijtmans L, den Heijer M, Reitsma P, Heil S, Blom H, Rosendaal F (1998) Thermolabile methylenetetrahydrofolate reductase and factor V Leiden in the risk of deep-vein thrombosis. Thromb Haemost 79(02):254–258. https://doi.org/10.1055/s-0037-1614974

    Article  CAS  PubMed  Google Scholar 

  • Kluijtmans LA, Boers GH, Kraus JP, van den Heuvel LP, Cruysberg JR, Trijbels FJ, Blom HJ (1999) The molecular basis of cystathionine β-synthase deficiency in Dutch patients with homocystinuria: effect of CBS genotype on biochemical and clinical phenotype and on response to treatment. Am J Hum Genet 65(1):59–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kluijtmans LA, van den Heuvel LP, Boers GH, Frosst P, Stevens EM, van Oost BA, den Heijer M, Trijbels FJ, Rozen R, Blom HJ (1996) Molecular genetic analysis in mild hyperhomocysteinemia: a common mutation in the methylenetetrahydrofolate reductase gene is a genetic risk factor for cardiovascular disease. Am J Hum Genet 58(1):35–41

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kozich V, Kraus E, de Franchis R, Fowler B, Boers GHJ, Graham I, Kraus JP (1995) Hyperhomocysteinemia in premature arterial disease: examination of cystathionine β-synthase alleles at the molecular level. Hum Mol Genet 4(4):623–629. https://doi.org/10.1093/hmg/4.4.623

    Article  CAS  PubMed  Google Scholar 

  • Lalouschek W, Aull S, Serles W, Schnider P, Mannhalter C, Lang T, Deecke L, Zeiler K (1999a) Genetic and nongenetic factors influencing plasma homocysteine levels in patients with ischemic cerebrovascular disease and in healthy control subjects. J Lab Clin Med 133(6):575–582

    Article  CAS  PubMed  Google Scholar 

  • Lalouschek W, Aull S, Serles W, Schnider P, Mannhalter C, Pabinger-Fasching I, Deecke L, Zeiler K (1999b) C677T MTHFR mutation and factor V Leiden mutation in patients with TIA/minor stroke: a case-control study. Thromb Res 93(2):61–69. https://doi.org/10.1016/S0049-3848(98)00154-6

    Article  CAS  PubMed  Google Scholar 

  • Langman LJ, Cole DE (1999) Homocysteine. Crit Rev Clin Lab Sci 36(4):365–406

    Article  CAS  PubMed  Google Scholar 

  • Legnani C, Palareti G, Grauso F, Sassi S, Grossi G, Piazzi S, Bernardi F, Marchetti G, Ferraresi P, Coccheri S (1997) Hyperhomocyst (e) inemia and a common methylenetetrahydrofolate reductase mutation (Ala223Val MTHFR) in patients with inherited thrombophilic coagulation defects. Arterioscler Thromb Vasc Biol 17(11):2924–2929

    Article  CAS  PubMed  Google Scholar 

  • Malik NM, Syrris P, Schwartzman R, Kaski JC, Crossman DC, Francis SE, Carter ND, Jeffery S (1998) Methylenetetrahydrofolate reductase polymorphism (C-677T) and coronary artery disease. Clin Sci 95(3):311–315. https://doi.org/10.1042/cs0950311

    Article  CAS  Google Scholar 

  • Malinow MR, Levenson J, Giral P, Nieto FJ, Razavian M, Segond P, Simon A (1995) Role of blood pressure, uric acid, and hemorheological parameters on plasma homocyst(e)ine concentration. Atherosclerosis 114(2):175–183. https://doi.org/10.1016/0021-9150(94)05481-W

    Article  CAS  PubMed  Google Scholar 

  • Margaglione M, D’Andrea G, d’Addedda M, Giuliani N, Cappucci G, Iannaccone L, Vecchione G, Grandone E, Brancaccio V, Di Minno G (1998) The methylenetetrahydrofolate reductase TT677 genotype is associated with venous thrombosis independently of the coexistence of the FV Leiden and the prothrombin. Thromb Haemost 79(05):907–911

    Article  CAS  PubMed  Google Scholar 

  • McCully KS (1969) Vascular pathology of homocysteinemia: implications for the pathogenesis of arteriosclerosis. Am J Pathol 56(1):111

    CAS  PubMed  PubMed Central  Google Scholar 

  • McKusick VA (1972) Heritable disorders of connective tissue. Mosby, Maryland Heights, Missouri

    Google Scholar 

  • McQuillan BM, Beilby JP, Nidorf M, Thompson PL, Hung J (1999) Hyperhomocysteinemia but not the C677T mutation of methylenetetrahydrofolate reductase is an independent risk determinant of carotid wall thickening: the Perth carotid ultrasound disease assessment study (CUDAS). Circulation 99(18):2383–2388

    Article  CAS  PubMed  Google Scholar 

  • Mölgaard J, Malinow MR, Lassvik C, Holm A-C, Upson B, Olsson AG (1992) Hyperhomocyst(e)inaemia: an independent risk factor for intermittent claudication. J Intern Med 231(3):273–279

    Article  PubMed  Google Scholar 

  • Morita H, Kurihara H, Tsubaki S, Sugiyama T, Hamada C, Kurihara Y, Shindo T, Oh-hashi Y, Kitamura K, Yazaki Y (1998) Methylenetetrahydrofolate reductase gene polymorphism and ischemic stroke in Japanese. Arterioscler Thromb Vasc Biol 18(9):1465–1469. https://doi.org/10.1161/01.ATV.18.9.1465

    Article  CAS  PubMed  Google Scholar 

  • Morrison HI, Schaubel D, Desmeules M, Wigle DT (1996) Serum folate and risk of fatal coronary heart disease. JAMA 275(24):1893–1896

    Article  CAS  PubMed  Google Scholar 

  • Mudd SH, Skovby F, Levy HL, Pettigrew KD, Wilcken B, Pyeritz RE, Andria G, Boers GH, Bromberg IL, Cerone R et al (1985) The natural history of homocystinuria due to cystathionine beta-synthase deficiency. Am J Hum Genet 37(1):1–31

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakata Y, Katsuya T, Takami S, Sato N, Fu Y, Ishikawa K, Takiuchi S, Rakugi H, Miki T, Higaki J, Ogihara T (1998) Methylenetetrahydrofolate reductase gene polymorphism*: relation to blood pressure and cerebrovascular disease. Am J Hypertens 11(8):1019–1023. https://doi.org/10.1016/S0895-7061(98)00046-6

    Article  CAS  PubMed  Google Scholar 

  • Norlund L, Grubb A, Fex G, Leksell H, Nilsson J-E, Schenck H, Hultberg B (1998) The Increase of Plasma Homocysteine Concentrations with Age Is Partly due to the Deterioration of Renal Function as Determined by Plasma Cystatin C. Clin Chem Lab Med 36(3):175–178. https://doi.org/10.1515/CCLM.1998.032

    Article  CAS  PubMed  Google Scholar 

  • Nygård O, Vollset SE, Refsum H, Brattström L, Ueland PM (1999) Total homocysteine and cardiovascular disease. J Intern Med 246(5):425–454. https://doi.org/10.1046/j.1365-2796.1999.00512.x

    Article  PubMed  Google Scholar 

  • Nygård O, Vollset SE, Refsum H, Stensvold I, Tverdal A, Nordrehaug JE, Ueland PM, Kvåle G (1995) Total plasma homocysteine and cardiovascular risk profile: the Hordaland homocysteine study. JAMA 274(19):1526–1533. https://doi.org/10.1001/jama.1995.03530190040032

    Article  PubMed  Google Scholar 

  • Pancharuniti N, Lewis CA, Sauberlich HE, Perkins LL, Go RC, Alvarez JO, Macaluso M, Acton RT, Copeland RB, Cousins AL (1994) Plasma homocyst(e)ine, folate, and vitamin B-12 concentrations and risk for early-onset coronary artery disease. Am J Clin Nutr 59(4):940–948

    Article  CAS  PubMed  Google Scholar 

  • Perneger TV, Nieto FJ, Whelton PK, Klag MJ, Comstock GW, Szklo M (1993) A prospective study of blood pressure and serum creatinine: results from the “clue” study and the ARIC study. JAMA 269(4):488–493. https://doi.org/10.1001/jama.1993.03500040054036

    Article  CAS  PubMed  Google Scholar 

  • Petri M, Roubenoff R, Dallal GE, Nadeau MR, Selhub J, Rosenberg IH (1996) Plasma homocysteine as a risk factor for atherothrombotic events in systemic lupus erythematosus. Lancet 348(9035):1120–1124. https://doi.org/10.1016/S0140-6736(96)03032-2

    Article  CAS  PubMed  Google Scholar 

  • Philipp CS, Dilley A, Saidi P, Evatt B, Austin H, Zawadsky J, Harwood D, Ellingsen D, Barnhart E, Phillips DJ (1998) Deletion polymorphism in the angiotensin-converting enzyme gene as a thrombophilic risk factor after hip arthroplasty. Thromb Haemost 80(12):869–873

    Article  CAS  PubMed  Google Scholar 

  • Press R, Beamer N, Evans A, DeLoughery T, Coull B (1999) Role of a common mutation in the homocysteine regulatory enzyme methylenetetrahydrofolate reductase in ischemic stroke. Diagn Mol Pathol 8(1):54–58. https://doi.org/10.1097/00019606-199903000-00009

    Article  CAS  PubMed  Google Scholar 

  • Ray JG (1998) Meta-analysis of hyperhomocysteinemia as a risk factor for venous thromboembolic disease. Arch Intern Med 158(19):2101–2106. https://doi.org/10.1001/archinte.158.19.2101

    Article  CAS  PubMed  Google Scholar 

  • Refsum H, Ueland PM, Nygård O, Vollset SE (1998) Homocysteine and cardiovascular disease. Annu Rev Med 49(1):31–62

    Article  CAS  PubMed  Google Scholar 

  • Ridker PM, Manson JE, Buring JE, Shih J, Matias M, Hennekens CH (1999) Homocysteine and risk of cardiovascular disease among postmenopausal women. JAMA 281(19):1817–1821. https://doi.org/10.1001/jama.281.19.1817

    Article  CAS  PubMed  Google Scholar 

  • Rintelen C, Mannhalter C, Lechner K, Eichinger S, Kyrle PA, Papagiannopoulos M, Schneider B, Pabinger I (1999) No evidence for an increased risk of venous thrombosis in patients with factor V Leiden by the homozygous 677 C to T mutation in the methylenetetrahydrofolate-reductase gene. Blood Coagul Fibrinolysis 10(2):101–105

    Article  CAS  PubMed  Google Scholar 

  • Robinson K, Mayer EL, Miller DP, Green R, van Lente F, Gupta A, Kottke-Marchant K, Savon SR, Selhub J, Nissen SE (1995) Hyperhomocysteinemia and low pyridoxal phosphate: common and independent reversible risk factors for coronary artery disease. Circulation 92(10):2825–2830

    Article  CAS  PubMed  Google Scholar 

  • Ruilope LM (1999) The kidney as part of the cardiovascular system. J Cardiovasc Pharmacol 33:S7–S10

    Article  PubMed  Google Scholar 

  • Salden A, Keeney S, Hay C, Cumming A (1997) The C677T MTHFR variant and the risk of venous thrombosis. Br J Haematol 99(2):472

    CAS  PubMed  Google Scholar 

  • Salooja N, Catto A, Carter A, Tudenham E, Grant P (1998) Methylene tetrahydrofolate reductase C677T genotype and stroke. Clin Lab Haematol 20(6):357–361. https://doi.org/10.1046/j.1365-2257.1998.00158.x

    Article  CAS  PubMed  Google Scholar 

  • Sardharwalla IB, Fowler B, Robins AJ, Komrower GM (1974) Detection of heterozygotes for homocystinuria: study of Sulphur-containing amino acids in plasma and urine after L-methionine loading. Arch Dis Child 49(7):553–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schächinger V, Britten MB, Elsner M, Walter DH, Scharrer I, Zeiher AM (1999) A positive family history of premature coronary artery disease is associated with impaired endothelium-dependent coronary blood flow regulation. Circulation 100(14):1502–1508

    Article  PubMed  Google Scholar 

  • Schimke RN, McKusick VA, Huang T, Pollack AD (1965) Homocystinuria: studies of 20 families with 38 affected members. JAMA 193(9):711–719

    Article  CAS  PubMed  Google Scholar 

  • Schmitz C, Lindpaintner K, Verhoef P, Gaziano JM, Buring J (1996) Genetic polymorphism of methylenetetrahydrofolate reductase and myocardial infarction: a case-control study. Circulation 94(8):1812–1814

    Article  CAS  PubMed  Google Scholar 

  • Selhub J, Jacques PF, Rosenberg IH, Rogers G, Bowman BA, Gunter EW, Wright JD, Johnson CL (1999) Serum total homocysteine concentrations in the third National Health and nutrition examination survey (1991–1994): population reference ranges and contribution of vitamin status to high serum concentrations. Ann Intern Med 131(5):331–339

    Article  CAS  PubMed  Google Scholar 

  • Shimakawa T, Nieto FJ, Malinow MR, Chambless LE, Schreiner PJ, Szklo M (1997) Vitamin intake: a possible determinant of plasma homocyst(e)ine among middle-aged adults. Ann Epidemiol 7(4):285–293. https://doi.org/10.1016/S1047-2797(97)00004-5

    Article  CAS  PubMed  Google Scholar 

  • Siri PW, Verhoef P, Kok FJ (1998) Vitamins B6, B12, and folate: association with plasma Total homocysteine and risk of coronary atherosclerosis. NJ Am Coll Nutr 17(5):435–441. https://doi.org/10.1080/07315724.1998.10718790

    Article  CAS  Google Scholar 

  • Spence JD, Malinow MR, Barnett PA, Marian AJ, Freeman D, Hegele RA (1999) Plasma Homocyst(e)ine concentration, but not MTHFR genotype, is associated with variation in carotid plaque area. Stroke 30(5):969–973. https://doi.org/10.1161/01.STR.30.5.969

    Article  CAS  PubMed  Google Scholar 

  • Stabler SP, Marcell PD, Podell ER, Allen RH, Savage DG, Lindenbaum J (1988) Elevation of total homocysteine in the serum of patients with cobalamin or folate deficiency detected by capillary gas chromatography-mass spectrometry. J Clin Invest 81(2):466–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stehouwer CDA, Gall M-A, Hougaard P, Jakobs C, Parving H-H (1999) Plasma homocysteine concentration predicts mortality in non-insulin-dependent diabetic patients with and without albuminuria. Kidney Int 55(1):308–314. https://doi.org/10.1046/j.1523-1755.1999.00256.x

    Article  CAS  PubMed  Google Scholar 

  • Sutton-Tyrrell K, Bostom A, Selhub J, Zeigler-Johnson C (1997) High homocysteine levels are independently related to isolated systolic hypertension in older adults. Circulation 96(6):1745–1749. https://doi.org/10.1161/01.CIR.96.6.1745

    Article  CAS  PubMed  Google Scholar 

  • Taniwaki H, Nishizawa Y, Kawagishi T, Ishimura E, Emoto M, Okamura T, Okuno Y, Morii H (1998) Decrease in glomerular filtration rate in Japanese patients with type 2 diabetes is linked to atherosclerosis. Diabetes Care 21(11):1848. https://doi.org/10.2337/diacare.21.11.1848

    Article  CAS  PubMed  Google Scholar 

  • Thuillier L, Chadefaux-Vekemans B, Bonnefont JP, Kara A, Aupetit J, Rochette C, Montalescot G, Couty MC, Kamoun P, Ankri A (1998) Does the polymorphism 677C-T of the 5,10-methylenetetrahydrofolate reductase gene contribute to homocysteine-related vascular disease? J Inherit Metab Dis 21(8):812–822. https://doi.org/10.1023/A:1005414617390

    Article  CAS  PubMed  Google Scholar 

  • Tokgözoğlu SL, Alikaşifoğlu M, Ünsal I, Atalar E, Aytemir K, Özer N, Övünç K, Usal Ö, Kes S, Tunçbilek E (1999) Methylene tetrahydrofolate reductase genotype and the risk and extent of coronary artery disease in a population with low plasma folate. Heart 81(5):518. https://doi.org/10.1136/hrt.81.5.518

    Article  PubMed  PubMed Central  Google Scholar 

  • Tosetto A, Missiaglia E, Frezzato M, Rodeghiero F (1997) The VITA project: C677T mutation in the methylene-tetrahydrofolate reductase gene and risk of venous thromboembolism. Br J Haematol 97(4):804–806

    Article  CAS  PubMed  Google Scholar 

  • Tracy RE, Strong JP, Newman WP, Malcom GT, Oalmann MC, Guzman MA (1996) Renovasculopathies of nephrosclerosis in relation to atherosclerosis at ages 25 to 54 years. Kidney Int 49(2):564–570. https://doi.org/10.1038/ki.1996.80

    Article  CAS  PubMed  Google Scholar 

  • Tsai MY, Welge BG, Hanson NQ, Bignell MK, Vessey J, Schwichtenberg K, Yang F, Bullemer FE, Rasmussen R, Graham KJ (1999) Genetic causes of mild hyperhomocysteinemia in patients with premature occlusive coronary artery diseases. Atherosclerosis 143(1):163–170. https://doi.org/10.1016/S0021-9150(98)00271-8

    Article  CAS  PubMed  Google Scholar 

  • Usui M, Matsuoka H, Miyazaki H, Ueda S, Okuda S, Imaizumi T (1999) Endothelial dysfunction by acute hyperhomocyst (e) inaemia: restoration by folic acid. Clin Sci 96(3):235–239

    Article  CAS  Google Scholar 

  • van den Berg M, Stehouwer CDA, Bierdrager E, Rauwerda JA (1996) Plasma homocysteine and severity of atherosclerosis in young patients with lower-limb atherosclerotic disease. Arterioscler Thromb Vasc Biol 16(1):165–171. https://doi.org/10.1161/01.ATV.16.1.165

    Article  PubMed  Google Scholar 

  • Verhaar MC, Rabelink TJ (1999) Future for folates in cardiovascular disease. Eur J Clin Investig 29(8):657–658

    Article  CAS  Google Scholar 

  • Verhoef P, Kok FJ, Kruyssen DA, Schouten EG, Witteman JC, Grobbee DE, Ueland PM, Refsum H (1997) Plasma total homocysteine, B vitamins, and risk of coronary atherosclerosis. Arterioscler Thromb Vasc Biol 17(5):989–995

    Article  CAS  PubMed  Google Scholar 

  • Verhoef P, Rimm EB, Hunter DJ, Chen J, Willett WC, Kelsey K, Stampfer MJ (1998) A common mutation in the methylenetetrahydrofolate reductase gene and risk of coronary heart disease: results among US men. J Am Coll Cardiol 32(2):353–359

    Article  CAS  PubMed  Google Scholar 

  • Verhoeff BJ, Trip MD, Prins MH, Kastelein JJP, Reitsma PH (1998) The effect of a common methylenetetrahydrofolate reductase mutation on levels of homocysteine, folate, vitamin B12 and on the risk of premature atherosclerosis. Atherosclerosis 141(1):161–166. https://doi.org/10.1016/S0021-9150(98)00156-7

    Article  CAS  PubMed  Google Scholar 

  • Visy JM, Le Coz P, Chadefaux B, Fressinaud C, Woimant F, Marquet J, Zittoun J, Visy J, Vallat JM, Haguenau M (1991) Homocystinuria due to 5,10-methylenetetrahydrofolate reductase deficiency revealed by stroke in adult siblings. Neurology 41(8):1313–1313

    Article  CAS  PubMed  Google Scholar 

  • Wang XL, Wang J, McCredie RM, Wilcken DEL (1997) Polymorphisms of factor V, factor VII, and fibrinogen genes: relevance to severity of coronary artery disease. Arterioscler Thromb Vasc Biol 17(2):246–251

    Article  CAS  PubMed  Google Scholar 

  • White HH, Rowland LP, Araki S, Thompson HL, Cowen D (1965) Homocystinuria. Arch Neurol 13(5):455–470

    Article  CAS  PubMed  Google Scholar 

  • Wilcken DE, Dudman NP (1992) Homocystinuria and atherosclerosis. In: Molecular genetics of coronary artery disease. Karger Publishers, Basel, pp 311–324

    Google Scholar 

  • Wilcken DE, Dudman NP, Tyrrell PA, Robertson MR (1988) Folic acid lowers elevated plasma homocysteine in chronic renal insufficiency: possible implications for prevention of vascular disease. Metabolism 37(7):697–701

    Article  CAS  PubMed  Google Scholar 

  • Wilcken DE, Reddy SG, Gupta VJ (1983) Homocysteinemia, ischemic heart disease, and the carrier state for homocystinuria. Metabolism 32(4):363–370

    Article  CAS  PubMed  Google Scholar 

  • Wilcken DE, Wilcken B (1998) Vitamins and homocysteine in cardiovascular disease and aging. Ann N Y Acad Sci 854(1):361–370

    Article  CAS  PubMed  Google Scholar 

  • Wilcken DEL, Gupta VJ, Reddy SG (1980) Accumulation of Sulphur-containing amino acids including cysteine-homocysteine in patients on maintenance haemodialysis. Clin Sci 58(5):427–430

    Article  CAS  Google Scholar 

  • Wilcken DEL, Wilcken B (1997) The natural history of vascular disease in homocystinuria and the effects of treatment. J Inherit Metab Dis 20(2):295–300

    Article  CAS  PubMed  Google Scholar 

  • Wollesen F, Brattström L, Refsum H, Ueland PERM, Berglund L, Berne C (1999) Plasma total homocysteine and cysteine in relation to glomerular filtration rate in diabetes mellitus. Kidney Int 55(3):1028–1035. https://doi.org/10.1046/j.1523-1755.1999.0550031028.x

    Article  CAS  PubMed  Google Scholar 

  • Yap S, Naughten E (1998) Homocystinuria due to cystathionine β-synthase deficiency in Ireland: 25 years’ experience of a newborn screened and treated population with reference to clinical outcome and biochemical control. J Inherit Metab Dis 21(7):738–747. https://doi.org/10.1023/A:1005445132327

    Article  CAS  PubMed  Google Scholar 

  • Zeitlin A, Frishman WH, Chang CJ (1997) The association of vitamin b 12 and folate blood levels with mortality and cardiovascular morbidity incidence in the old old: the Bronx aging study. Am J Ther 4(7–8):275–281

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, P., Verma, S.K., Rai, S., Prakash, P.S., Chitara, D. (2022). Role of Homocysteine Metabolism in Cardiovascular Diseases. In: Dubey, G.P., Misra, K., Kesharwani, R.K., Ojha, R.P. (eds) Homocysteine Metabolism in Health and Disease. Springer, Singapore. https://doi.org/10.1007/978-981-16-6867-8_14

Download citation

Publish with us

Policies and ethics