Skip to main content

Advertisement

Log in

Mechanisms Controlling Mast Cell and Basophil Lineage Decisions

  • BASIC AND APPLIED SCIENCE (M FRIERI AND PJ BRYCE, SECTION EDITORS)
  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Basophils and mast cells have long been known to play critical roles in allergic disease and host defense against parasitic infections. Recent recognition of these effector cells in immune regulations, host defense against bacteria and virus, and autoimmune diseases entices increased interest in studying these cells. However, origin and molecular regulation of basophil and mast cell differentiation remain incompletely understood. In this review, we focus on recent advances of the understanding the origin and molecular regulation of mouse basophil and mast cell development. We also summarize progress in the understanding of the origin and molecular regulation of human basophil and mast cell development. A more complete understanding of molecular regulation of basophils and mast cells will lead to the development of interventions that are more effective in achieving long-term success.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Karasuyama H, Mukai K, Obata K, Tsujimura Y, Wada T. Nonredundant roles of basophils in immunity. Annu Rev Immunol. 2011;29:45–69. doi:10.1146/annurev-immunol-031210-101257.

    Article  CAS  PubMed  Google Scholar 

  2. Kim HY, DeKruyff RH, Umetsu DT. The many paths to asthma: phenotype shaped by innate and adaptive immunity. Nat Immunol. 2010;11(7):577–84. doi:10.1038/ni.1892.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Voehringer D. Protective and pathological roles of mast cells and basophils. Nat Rev Immunol. 2013;13(5):362–75. doi:10.1038/nri3427.

    Article  CAS  PubMed  Google Scholar 

  4. Wedemeyer J, Tsai M, Galli SJ. Roles of mast cells and basophils in innate and acquired immunity. Curr Opin Immunol. 2000;12(6):624–31.

    Article  CAS  PubMed  Google Scholar 

  5. Arock M, Schneider E, Boissan M, Tricottet V, Dy M. Differentiation of human basophils: an overview of recent advances and pending questions. J Leukoc Biol. 2002;71(4):557–64.

    CAS  PubMed  Google Scholar 

  6. Frieri M, Patel R, Celestin J. Mast cell activation syndrome: a review. Curr Allergy Asthma Rep. 2013;13(1):27–32. doi:10.1007/s11882-012-0322-z.

    Article  CAS  PubMed  Google Scholar 

  7. Anthony RM, Rutitzky LI, Urban Jr JF, Stadecker MJ, Gause WC. Protective immune mechanisms in helminth infection. Nat Rev Immunol. 2007;7(12):975–87. doi:10.1038/nri2199.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Barnes PJ. Severe asthma: advances in current management and future therapy. J Allergy Clin Immunol. 2012;129(1):48–59. doi:10.1016/j.jaci.2011.11.006.

    Article  CAS  PubMed  Google Scholar 

  9. Galli SJ, Tsai M. Mast cells in allergy and infection: versatile effector and regulatory cells in innate and adaptive immunity. Eur J Immunol. 2010;40(7):1843–51. doi:10.1002/eji.201040559.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Kumamoto Y, Linehan M, Weinstein JS, Laidlaw BJ, Craft JE, Iwasaki A. CD301b(+) dermal dendritic cells drive T helper 2 cell-mediated immunity. Immunity. 2013;39(4):733–43. doi:10.1016/j.immuni.2013.08.029.

    Article  CAS  PubMed  Google Scholar 

  11. Otsuka A, Nakajima S, Kubo M, Egawa G, Honda T, Kitoh A, et al. Basophils are required for the induction of Th2 immunity to haptens and peptide antigens. Nat Commun. 2013;4:1739. doi:10.1038/ncomms2740.

    Article  PubMed  Google Scholar 

  12. Tang H, Cao W, Kasturi SP, Ravindran R, Nakaya HI, Kundu K, et al. The T helper type 2 response to cysteine proteases requires dendritic cell-basophil cooperation via ROS-mediated signaling. Nat Immunol. 2010;11(7):608–17. doi:10.1038/ni.1883.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Guermonprez P, Helft J, Claser C, Deroubaix S, Karanje H, Gazumyan A, et al. Inflammatory Flt3l is essential to mobilize dendritic cells and for T cell responses during Plasmodium infection. Nat Med. 2013;19(6):730–8. doi:10.1038/nm.3197.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Lu LF, Lind EF, Gondek DC, Bennett KA, Gleeson MW, Pino-Lagos K, et al. Mast cells are essential intermediaries in regulatory T-cell tolerance. Nature. 2006;442(7106):997–1002. doi:10.1038/nature05010.

    Article  CAS  PubMed  Google Scholar 

  15. Chen CC, Grimbaldeston MA, Tsai M, Weissman IL, Galli SJ. Identification of mast cell progenitors in adult mice. Proc Natl Acad Sci U S A. 2005;102(32):11408–13. doi:10.1073/pnas.0504197102.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Franco CB, Chen CC, Drukker M, Weissman IL, Galli SJ. Distinguishing mast cell and granulocyte differentiation at the single-cell level. Cell Stem Cell. 2010;6(4):361–8. doi:10.1016/j.stem.2010.02.013.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Arinobu Y, Iwasaki H, Gurish MF, Mizuno S, Shigematsu H, Ozawa H, et al. Developmental checkpoints of the basophil/mast cell lineages in adult murine hematopoiesis. Proc Natl Acad Sci U S A. 2005;102(50):18105–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Mukai K, Benbarak MJ, Tachibana M, Nishida K, Karasuyama H, Taniuchi I, et al. Critical role of P1-Runx1 in mouse basophil development. Blood. 2012;120(1):76–85. doi:10.1182/blood-2011-12-399113.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Qi X, Hong J, Chaves L, Zhuang Y, Chen Y, Wang D, et al. Antagonistic regulation by the transcription factors C/EBPalpha and MITF specifies basophil and mast cell fates. Immunity. 2013;39(1):97–110. doi:10.1016/j.immuni.2013.06.012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Ohnmacht C, Voehringer D. Basophil effector function and homeostasis during helminth infection. Blood. 2009;113(12):2816–25. doi:10.1182/blood-2008-05-154773.

    Article  CAS  PubMed  Google Scholar 

  21. Metcalf D, Ng AP, Baldwin TM, Di Rago L, Mifsud S. Concordant mast cell and basophil production by individual hematopoietic blast colony-forming cells. Proc Natl Acad Sci U S A. 2013;110(22):9031–5. doi:10.1073/pnas.1307711110.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Shelburne CP, McCoy ME, Piekorz R, Sexl V, Roh KH, Jacobs-Helber SM, et al. Stat5 expression is critical for mast cell development and survival. Blood. 2003;102(4):1290–7. doi:10.1182/blood-2002-11-3490.

    Article  CAS  PubMed  Google Scholar 

  23. Migliaccio AR, Rana RA, Sanchez M, Lorenzini R, Centurione L, Bianchi L, et al. GATA-1 as a regulator of mast cell differentiation revealed by the phenotype of the GATA-1low mouse mutant. J Exp Med. 2003;197(3):281–96.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Tsai FY, Orkin SH. Transcription factor GATA-2 is required for proliferation/survival of early hematopoietic cells and mast cell formation, but not for erythroid and myeloid terminal differentiation. Blood. 1997;89(10):3636–43.

    CAS  PubMed  Google Scholar 

  25. Takemoto CM, Lee Y-N, Jegga AG, Zablocki D, Brandal S, Shahlaee A, et al. Mast cell transcriptional networks. Blood Cell Mol Dis. 2008;41(1):82–90.

    Article  CAS  Google Scholar 

  26. Kitamura Y, Morii E, Jippo T, Ito A. Regulation of mast cell phenotype by MITF. Int Arch Allergy Immunol. 2002;127(2):106–9.

    Article  CAS  PubMed  Google Scholar 

  27. Ohmori K, Luo Y, Jia Y, Nishida J, Wang Z, Bunting KD, et al. IL-3 induces basophil expansion in vivo by directing granulocyte-monocyte progenitors to differentiate into basophil lineage-restricted progenitors in the bone marrow and by increasing the number of basophil/mast cell progenitors in the spleen. J Immunol. 2009;182(5):2835–41. doi:10.4049/jimmunol.0802870.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Iwasaki H, Mizuno S, Arinobu Y, Ozawa H, Mori Y, Shigematsu H, et al. The order of expression of transcription factors directs hierarchical specification of hematopoietic lineages. Genes Dev. 2006;20(21):3010–21. doi:10.1101/gad.1493506.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Lilla JN, Chen CC, Mukai K, BenBarak MJ, Franco CB, Kalesnikoff J, et al. Reduced mast cell and basophil numbers and function in Cpa3-Cre; Mcl-1fl/fl mice. Blood. 2011;118(26):6930–8. doi:10.1182/blood-2011-03-343962.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Rao KN, Smuda C, Gregory GD, Min B, Brown MA. Ikaros limits basophil development by suppressing C/EBP-alpha expression. Blood. 2013;122(15):2572–81. doi:10.1182/blood-2013-04-494625.

    Article  CAS  PubMed  Google Scholar 

  31. Kitamura Y, Oboki K, Ito A. Development of mast cells. Proceedings Japan Acad Ser B Phys Biol Sci. 2007;83(6):164–74.

    Article  Google Scholar 

  32. Langdon JM, Schroeder JT, Vonakis BM, Bieneman AP, Chichester K, Macdonald SM. Histamine-releasing factor/translationally controlled tumor protein (HRF/TCTP)-induced histamine release is enhanced with SHIP-1 knockdown in cultured human mast cell and basophil models. J Leukoc Biol. 2008;84(4):1151–8. doi:10.1189/jlb.0308172.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Gorgens A, Radtke S, Mollmann M, Cross M, Durig J, Horn PA, et al. Revision of the human hematopoietic tree: granulocyte subtypes derive from distinct hematopoietic lineages. Cell Rep. 2013;3(5):1539–52. doi:10.1016/j.celrep.2013.04.025.

    Article  PubMed  Google Scholar 

  34. Schroeder JT. Basophils: emerging roles in the pathogenesis of allergic disease. Immunol Rev. 2011;242(1):144–60. doi:10.1111/j.1600-065X.2011.01023.x.

    Article  CAS  PubMed  Google Scholar 

  35. Kirshenbaum AS, Goff JP, Kessler SW, Mican JM, Zsebo KM, Metcalfe DD. Effect of IL-3 and stem cell factor on the appearance of human basophils and mast cells from CD34+ pluripotent progenitor cells. J Immunol. 1992;148(3):772–7.

    CAS  PubMed  Google Scholar 

  36. Agis H, Willheim M, Sperr WR, Wilfing A, Kromer E, Kabrna E, et al. Monocytes do not make mast cells when cultured in the presence of SCF. Characterization of the circulating mast cell progenitor as a c-kit+, CD34+, Ly-, CD14-, CD17-, colony-forming cell. J Immunol. 1993;151(8):4221–7.

    CAS  PubMed  Google Scholar 

  37. Kirshenbaum AS, Goff JP, Semere T, Foster B, Scott LM, Metcalfe DD. Demonstration that human mast cells arise from a progenitor cell population that is CD34(+), c-kit(+), and expresses aminopeptidase N (CD13). Blood. 1999;94(7):2333–42.

    CAS  PubMed  Google Scholar 

  38. Kirshenbaum AS, Metcalfe DD. Growth of human mast cells from bone marrow and peripheral blood-derived CD34+ pluripotent progenitor cells. Methods Mol Biol. 2006;315:105–12.

    PubMed  Google Scholar 

  39. Chan EC, Bai Y, Kirshenbaum AS, Fischer ER, Simakova O, Bandara G, et al. Mastocytosis associated with a rare germline KIT K509I mutation displays a well-differentiated mast cell phenotype. J Allergy Clin Immunol. 2014. doi:10.1016/j.jaci.2013.12.1090.

    Google Scholar 

  40. Kempuraj D, Saito H, Kaneko A, Fukagawa K, Nakayama M, Toru H, et al. Characterization of mast cell-committed progenitors present in human umbilical cord blood. Blood. 1999;93(10):3338–46.

    CAS  PubMed  Google Scholar 

  41. Maaninka K, Lappalainen J, Kovanen PT. Human mast cells arise from a common circulating progenitor. J Allergy Clin Immunol. 2013;132(2):463–9. doi:10.1016/j.jaci.2013.02.011. e3.

    Article  CAS  PubMed  Google Scholar 

  42. Leary AG, Ogawa M. Identification of pure and mixed basophil colonies in culture of human peripheral blood and marrow cells. Blood. 1984;64(1):78–83.

    CAS  PubMed  Google Scholar 

  43. Denburg JA, Telizyn S, Messner H, Lim B, Jamal N, Ackerman SJ, et al. Heterogeneity of human peripheral blood eosinophil-type colonies: evidence for a common basophil-eosinophil progenitor. Blood. 1985;66(2):312–8.

    CAS  PubMed  Google Scholar 

  44. Poch T, Hermansky F, Lodrova V. A contribution to the simultaneous appearance of basophilic and eosinophilic granules in chronic myelocytic leukemia. Neoplasma. 1973;20(4):413–7.

    CAS  PubMed  Google Scholar 

  45. Weil SC, Hrisinko MA. A hybrid eosinophilic-basophilic granulocyte in chronic granulocytic leukemia. Am J Clin Pathol. 1987;87(1):66–70.

    CAS  PubMed  Google Scholar 

  46. Lindner PS, Pardanani B, Angadi C, Frieri M. Acute nonlymphocytic leukemia in systemic mastocytosis with biclonal gammopathy. J Allergy Clin Immunol. 1992;90(3 Pt 1):410–2.

    Article  CAS  PubMed  Google Scholar 

  47. Frieri M, Quershi M. Pediatric mastocytosis: a review of the literature. Pediatr Allergy Immunol Pulmonol. 2013;26(4):175–80. doi:10.1089/ped.2013.0275.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Valent P, Sotlar K, Sperr WR, Escribano L, Yavuz S, Reiter A, et al. Refined diagnostic criteria and classification of mast cell leukemia (MCL) and myelomastocytic leukemia (MML): a consensus proposal. Ann Oncol. 2014. doi:10.1093/annonc/mdu047.

    PubMed  Google Scholar 

  49. Cruse G, Metcalfe DD, Olivera A. Functional deregulation of KIT: link to mast cell proliferative diseases and other neoplasms. Immunol Allergy Clin North Am. 2014;34(2):219–37. doi:10.1016/j.iac.2014.01.002.

    Article  PubMed  Google Scholar 

  50. Boyce JA, Friend D, Matsumoto R, Austen KF, Owen WF. Differentiation in vitro of hybrid eosinophil/basophil granulocytes: autocrine function of an eosinophil developmental intermediate. J Exp Med. 1995;182(1):49–57.

    Article  CAS  PubMed  Google Scholar 

  51. Celestin J, Frieri M. Eosinophilic disorders in various diseases. Curr Allergy Asthma Rep. 2012;12(1):18–24. doi:10.1007/s11882-011-0240-5.

    Article  PubMed  Google Scholar 

  52. Kocabas CN, Yavuz AS, Lipsky PE, Metcalfe DD, Akin C. Analysis of the lineage relationship between mast cells and basophils using the c-kit D816V mutation as a biologic signature. J Allergy Clin Immunol. 2005;115(6):1155–61. doi:10.1016/j.jaci.2005.02.030.

    Article  CAS  PubMed  Google Scholar 

  53. Buhring HJ, Simmons PJ, Pudney M, Muller R, Jarrossay D, van Agthoven A, et al. The monoclonal antibody 97A6 defines a novel surface antigen expressed on human basophils and their multipotent and unipotent progenitors. Blood. 1999;94(7):2343–56.

    CAS  PubMed  Google Scholar 

  54. Andoh K, Piao JH, Terashima K, Nakamura H, Sano K. Genomic structure and promoter analysis of the ecto-phosphodiesterase I gene (PDNP3) expressed in glial cells. Biochim Biophys Acta. 1999;1446(3):213–24.

    Article  CAS  PubMed  Google Scholar 

  55. Buhring HJ, Streble A, Valent P. The basophil-specific ectoenzyme E-NPP3 (CD203c) as a marker for cell activation and allergy diagnosis. Int Arch Allergy Immunol. 2004;133(4):317–29. doi:10.1159/000077351.

    Article  PubMed  Google Scholar 

  56. Ono E, Taniguchi M, Higashi N, Mita H, Kajiwara K, Yamaguchi H, et al. CD203c expression on human basophils is associated with asthma exacerbation. J Allergy Clin Immunol. 2010;125(2):483–9. doi:10.1016/j.jaci.2009.10.074. e3.

    Article  CAS  PubMed  Google Scholar 

  57. Buhring HJ, Seiffert M, Giesert C, Marxer A, Kanz L, Valent P, et al. The basophil activation marker defined by antibody 97A6 is identical to the ectonucleotide pyrophosphatase/phosphodiesterase 3. Blood. 2001;97(10):3303–5.

    Article  CAS  PubMed  Google Scholar 

  58. Frieri M. Mechanisms of disease for the clinician: systemic lupus erythematosus. Ann Allergy Asthma Immunol. 2013;110(4):228–32. doi:10.1016/j.anai.2012.12.010.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by grant from the National Institutes of Health (RO1AI083986).

Compliance with Ethics Guidelines

Conflict of Interest

Hua Huang and Yapeng Li declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Huang.

Additional information

This article is part of the Topical Collection on Basic and Applied Science

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Li, Y. Mechanisms Controlling Mast Cell and Basophil Lineage Decisions. Curr Allergy Asthma Rep 14, 457 (2014). https://doi.org/10.1007/s11882-014-0457-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11882-014-0457-1

Keywords

Navigation