Skip to main content
Log in

Project DyAdd: Implicit learning in adult dyslexia and ADHD

  • Published:
Annals of Dyslexia Aims and scope Submit manuscript

Abstract

In this study of the project DyAdd, implicit learning was investigated through two paradigms in adults (18–55 years) with dyslexia (n = 36) or with attention deficit/hyperactivity disorder (ADHD, n = 22) and in controls (n = 35). In the serial reaction time (SRT) task, there were no group differences in learning. However, those with ADHD exhibited faster RTs compared to other groups. In the artificial grammar learning (AGL) task, the groups did not differ from each other in their learning (i.e., grammaticality accuracy or similarity choices). Further, all three groups were sensitive to fragment overlap between learning and test-phase items (i.e., similarity choices were above chance). Grammaticality performance of control participants was above chance, but that of participants with dyslexia and participants with ADHD failed to differ from chance, indicating impaired grammaticality learning in these groups. While the main indices of AGL performance, grammaticality accuracy and similarity choices did not correlate with the neuropsychological variables that reflected dyslexia-related (phonological processing, reading, spelling, arithmetic) or ADHD-related characteristics (executive functions, attention), or intelligence, the explicit knowledge for the AGL grammar (i.e., ability to freely generate grammatical strings) correlated positively with the variables of phonological processing and reading. Further, SRT reaction times correlated positively with full scale intelligence quotient (FIQ). We conclude that, in AGL, learning difficulties of the underlying rule structure (as measured by grammaticality) are associated with dyslexia and ADHD. However, learning in AGL is not related to the defining neuropsychological features of dyslexia or ADHD. Instead, the resulting explicit knowledge relates to characteristics of dyslexia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abrams, M., & Reber, A. S. (1988). Implicit learning: robustness in the face of psychiatric disorders. Journal of Psycholinguistic Research, 17, 425–439.

    Google Scholar 

  • Ahissar, M. (2007). Dyslexia and the anchoring deficit hypothesis. Trends in Cognitive Sciences, 11, 458–465.

    Google Scholar 

  • American Psychiatric Association. (1994). Diagnostic and statistical manual of mental disorders (4th ed.). Washington: APA Press.

    Google Scholar 

  • Ashby, F. G., Alfonso-Reese, L. A., Turken, A. U., & Waldron, E. M. (1998). A neuropsychological theory of multiple systems in category learning. Psychological Review, 105(3), 442–481.

    Google Scholar 

  • Barnes, K. A., Howard, J. H., Howard, D. V., Kenealy, L., & Vaidya, C. J. (2010). Two forms of implicit learning in childhood ADHD. Developmental Neuropsychology, 35(5), 494–505.

    Google Scholar 

  • Bennett, I. J., Romano, J. C., Howard, J. H., & Howard, D. V. (2008). Two forms of implicit learning in young adults with dyslexia. Learning, Skill Acquisition, Reading, and Dyslexia, 1145, 184–198.

    Google Scholar 

  • Bishop, D. V. M., & Snowling, M. J. (2004). Developmental dyslexia and specific language impairment: Same or different? Psychological Bulletin, 130, 858–886.

    Google Scholar 

  • Bradley, L., & Bryant, P. E. (1983). Categorizing sounds and learning to read: A causal connection. Nature, 301(5899), 419–421.

    Google Scholar 

  • Brainard, D. H. (1997). The psychophisics toolbox. Spatial Vision, 10, 433–436.

    Google Scholar 

  • Cambridge Neuropsychological Test Automated Battery. (2004). CANTABeclipse test administration guide. Cambridge: Cambridge University Press.

  • Carroll, J. M., Maughan, B., Goodman, R., & Meltzer, H. (2005). Literacy difficulties and psychiatric disorders: Evidence for comorbidity. Journal of Child Psychology and Psychiatry, 46(5), 524–532.

    Google Scholar 

  • Cherkasova, M. V., & Hechtman, L. (2009). Neuroimaging in attention-deficit hyperactivity disorder: Beyond the frontostriatal circuitry. Canadian Journal of Psychiatry, 54(10), 651–664.

    Google Scholar 

  • Cleeremans, A., Destrebecqz, A., & Boyer, M. (1998). Implicit learning: news from the front. Trends in Cognitive Sciences, 2(10), 406–416.

    Google Scholar 

  • Conway, C. M., & Pisoni, D. B. (2008). Neurocognitive basis of implicit learning of sequential structure and its relation to language processing. Learning, Skill Acquisition, Reading, and Dyslexia, 1145, 113–131.

    Google Scholar 

  • D’Elia, L. F., Satz, P., Uchiyama, C. L., & White, T. (1996). Color trails test. Professional manual. Odessa: Psychological Assessment Resources.

    Google Scholar 

  • Daryn, E. (2000). Lessons from the follow-up of developmental dyslexics. Medical Hypotheses, 54(3), 434–437.

    Google Scholar 

  • De Quiros, G. B., & Kinsbourne, M. (2001). Adult ADHD. Annals of the New York Academy of Sciences, 931(1), 140–147.

    Google Scholar 

  • de Vries, M. H., Barth, A. C. R., Maiworm, S., Knecht, S., Zwitserlood, P., & Floel, A. (2010). Electrical stimulation of Broca’s area enhances implicit learning of an artificial grammar. Journal of Cognitive Neuroscience, 22(11), 2427–2436.

    Google Scholar 

  • Deroost, N., Zeischka, P., Coomans, D., Bouazza, S., Depessemier, P., & Soetens, E. (2010). Intact first- and second-order implicit sequence learning in secondary-school-aged children with developmental dyslexia. Journal of Clinical and Experimental Neuropsychology, 32(6), 561–572.

    Google Scholar 

  • Destrebecqz, A., Peigneux, P., Laureys, S., Degueldre, C., Del Fiore, G., Aerts, J., et al. (2005). The neural correlates of implicit and explicit sequence learning: Interacting networks revealed by the process dissociation procedure. Learning & Memory, 12(5), 480–490.

    Google Scholar 

  • Dickstein, S. G., Bannon, K., Xavier Castellanos, F., & Milham, M. P. (2006). The neural correlates of attention deficit hyperactivity disorder: An ALE meta-analysis. Journal of Child Psychology and Psychiatry, 47(10), 1051–1062.

    Google Scholar 

  • Domuta, A., & Péntek, I. (2000a). Implicit learning in ADHD preschool children. Paper presented at the 12th Annual CHADD International Conference.

  • Domuta, A., & Péntek, I. (2000b). Implicit learning in ADHD preschool children.

  • Doyon, J., Gaudreau, D., Laforce, R. J. R., Castonguay, M., Bedard, P. J. F., & Bouchard, J. P. (1997). Role of the striatum, cerebellum, and frontal lobes in the learning of a visuomotor sequence. Brain and Cognition, 34(2), 218–245.

    Google Scholar 

  • Doyon, J., Bellec, P., Amsel, R., Penhune, V., Monchi, O., Carrier, J., et al. (2009). Contributions of the basal ganglia and functionally related brain structures to motor learning. Behavioural Brain Research, 199(1), 61–75.

    Google Scholar 

  • Dykman, R. A., & Ackerman, P. T. (1991). Attention deficit disorder and specific reading disability: Separate but often overlapping disorders. Journal of Learning Disabilities, 24(2), 96–103.

    Google Scholar 

  • Elbro, C., Borstrom, I., & Petersen, D. K. (1998). Predicting dyslexia from kindergarten: The importance of distinctness of phonological representations of lexical items. Reading Research Quarterly, 33(1), 36–60.

    Google Scholar 

  • Elman, J. L. (1993). Learning and development in neural networks: the importance of starting small. Cognition, 48(1), 71–99.

    Google Scholar 

  • Epstein, J., Johnson, D. E., & Conners, C. K. (2001). Conners’ adult ADHD diagnostic interview for DSM-IV (CAADID). Toronto: Multi-Health Systems.

    Google Scholar 

  • Felton, R. H., Naylor, C. E., & Wood, F. B. (1990). Neuropsychological profile of adult dyslexics. Brain and Language, 39(4), 485–497.

    Google Scholar 

  • First, M. B., Gibbon, M., Spitzer, R. L., Williams, J. B. W., & Benjamin, L. S. (1997). Structured clinical interview for DSM-IV axis II personality disorders, (SCID-II). Washington: American Psychiatric Press, Inc.

    Google Scholar 

  • First, M. B., Spitzer, R. L., Gibbon, M., & Williams, J. B. W. (1996). Structured clinical interview for DSM-IV axis I disorders, clinician version (SCID-CV). Washington: American Psychiatric Press, Inc.

    Google Scholar 

  • Flöel, A., de Vries, M. H., Scholz, J., Breitenstein, C., & Johansen-Berg, H. (2009). White matter integrity in the vicinity of Broca’s area predicts grammar learning success. NeuroImage, 47(4), 1974–1981.

    Google Scholar 

  • Forkstam, C., Hagoort, P., Fernandez, G., Ingvar, M., & Petersson, K. M. (2006). Neural correlates of artificial syntactic structure classification. NeuroImage, 32(2), 956–967.

    Google Scholar 

  • Gabrieli, J. D. E. (2009). Dyslexia: A new synergy between education and cognitive neuroscience. Science, 325(5938), 280–283.

    Google Scholar 

  • Gayán, J., Willcutt, E. G., Fisher, S. E., Francks, C., Cardon, L. R., Olson, R. K., et al. (2005). Bivariate linkage scan for reading disability and attention-deficit/hyperactivity disorder localizes pleiotropic loci. Journal of Child Psychology and Psychiatry, 46(10), 1045–1056.

    Google Scholar 

  • Gebauer, G. F., & Mackintosh, N. J. (2007). Psychometric intelligence dissociates implicit and explicit learning. Journal of Experimental Psychology-Learning Memory and Cognition, 33(1), 34–54.

    Google Scholar 

  • Gilger, J. W., Pennington, B. F., & DeFries, J. C. (1992). A twin study of the etiology of comorbidity: Attention-deficit hyperactivity disorder and dyslexia. Journal of the American Academy of Child & Adolescent Psychiatry, 31(2), 343–348.

    Google Scholar 

  • Gómez-Beldarrain, M., García-Moncó, J. C., Rubio, B., & Pascual-Leone, A. (1998). Effect of focal cerebellar lesions on procedural learning in the serial reaction time task. Experimental Brain Research, 120(1), 25–30.

    Google Scholar 

  • Goswami, U. (2002). Phonology, reading development and dyslexia: A cross-linguistic perspective. Annals of Dyslexia, 52, 141–163.

    Google Scholar 

  • Griffiths, Y. M., & Snowling, M. J. (2001). Auditory word identification and phonological skills in dyslexic and average readers. Applied Psycholinguistics, 22(3), 419–439.

    Google Scholar 

  • Griffiths, Y. M., & Snowling, M. J. (2002). Predictors of exception word and nonword reading in dyslexic children: The severity hypothesis. Journal of Educational Psychology, 94(1), 34–43.

    Google Scholar 

  • Holopainen, L., Kairaluoma, L., Nevala, J., Ahonen, T., & Aro, M. (2004). Lukivaikeuksien seulontamenetelmä nuorille ja aikuisille. Jyväskylä: Niilo Mäki Instituutti.

    Google Scholar 

  • Howard, J. H., Howard, D. V., Japikse, K. C., & Eden, G. F. (2006). Dyslexics are impaired on implicit higher-order sequence learning, but not on implicit spatial context learning. Neuropsychologia, 44(7), 1131–1144.

    Google Scholar 

  • Hsu, H. J., & Bishop, D. V. (2011). Grammatical difficulties in children with specific language impairment: Is learning deficient? Human Development, 53(5), 264–277.

    Google Scholar 

  • Karatekin, C., White, T., & Bingham, C. (2009). Incidental and intentional sequence learning in youth-onset psychosis and attention-deficit/hyperactivity disorder (ADHD). Neuropsychology, 23(4), 445–459.

    Google Scholar 

  • Kaufman, S. B., De Young, C. G., Gray, J. R., Jimenez, L., Brown, J., & Mackintosh, N. (2010). Implicit learning as an ability. Cognition, 116(3), 321–340.

    Google Scholar 

  • Kelly, S. W., Griffiths, S., & Frith, U. (2002). Evidence for implicit sequence learning in dyslexia. Dyslexia, 8(1), 43–52.

    Google Scholar 

  • Kivisaari, S., Laasonen, M., Leppämäki, S., Tani, P., & Hokkanen, L. (2012). Retrospective assessment of ADHD symptoms in childhood. Journal of Attention Disorders, 16(6), 449–459.

    Google Scholar 

  • Knowlton, B. J., Ramus, S. J., & Squire, L. R. (1992). Intact artificial grammar learning in amnesia: Dissociation of classification learning and explicit memory for specific instances. Psychological Science, 3(3), 172–179.

    Google Scholar 

  • Knowlton, B. J., & Squire, L. R. (1996). Artificial grammar learning depends on implicit acquisition of both abstract and exemplar-specific information. Journal of Experimental Psychology: Learning, Memory, and Cognition, 22(1), 169–181.

    Google Scholar 

  • Laasonen, M. (2002). Temporal acuity in developmental dyslexia across the life span: Tactile, auditory, visual, and crossmodal estimations. Helsinki: Unpublished Academic dissertation, University of Helsinki.

    Google Scholar 

  • Laasonen, M., Hokkanen, L., Leppämäki, S., Tani, P., & Erkkilä, A. T. (2009a). Project DyAdd: Fatty acids and cognition in adults with dyslexia, ADHD, or both. Prostaglandins Leukotrienes & Essential Fatty Acids, 81(1), 79–88.

    Google Scholar 

  • Laasonen, M., Hokkanen, L., Leppämäki, S., Tani, P., & Erkkilä, A. T. (2009b). Project DyAdd: Fatty acids in adult dyslexia, ADHD, and their comorbid combination. Prostaglandins Leukotrienes & Essential Fatty Acids, 81(1), 89–96.

    Google Scholar 

  • Laasonen, M., Kauppinen, J., Leppämäki, S., Tani, P., Harno, H., Hokkanen, L., et al. (2012). Project DyAdd: classical eyeblink conditioning in adults with dyslexia and ADHD. Experimental Brain Research, 223(1), 19–32.

    Google Scholar 

  • Laasonen, M., Lahti-Nuuttila, P., & Virsu, V. (2002). Developmentally impaired processing speed decreases with age more than normal. NeuroReport, 13(9), 1111–1113.

    Google Scholar 

  • Laasonen, M., Lehtinen, M., Leppämäki, S., Tani, P., & Hokkanen, L. (2010). Project DyAdd: Phonological processing, reading, spelling, and arithmetic in adults with dyslexia or ADHD. Journal of Learning Disabilities, 43(1), 3–14.

    Google Scholar 

  • Laasonen, M., Leppämäki, S., Tani, P., & Hokkanen, L. (2009). Adult dyslexia and attention deficit disorder in Finland-Project DyAdd: WAIS-III cognitive profiles. Journal of Learning Disabilities, 42(6), 511–527.

    Google Scholar 

  • Laasonen, M., Salomaa, J., Leppämäki, S., Tani, P., Hokkanen, L., & Dye, M. (2012). Project DyAdd: Visual attention in adult dyslexia and ADHD. Brain and Cognition, 80(3), 311–327.

    Google Scholar 

  • Laasonen, M., Service, E., Lipsanen, J., & Virsu, V. (2010). Adult developmental dyslexia in a shallow orthography: Are there subgroups? Reading and Writing, 1–38.

  • Laasonen, M., Service, E., & Virsu, V. (2001). Temporal order and processing acuity of visual, auditory, and tactile perception in developmentally dyslexic young adults. Cognitive, Affective, & Behavioral Neuroscience, 1(4), 394–410.

    Google Scholar 

  • Laasonen, M., Service, E., & Virsu, V. (2002). Crossmodal temporal order and processing acuity in developmentally dyslexic young adults. Brain and Language, 80(3), 340–354.

    Google Scholar 

  • Laasonen, M., Tomma-Halme, J., Lahti-Nuuttila, P., Service, E., & Virsu, V. (2000). Rate of information segregation in developmentally dyslexic children. Brain and Language, 75(1), 66–81.

    Google Scholar 

  • Laasonen, M., Virsu, V., Oinonen, S., Sandbacka, M., Salakari, A., & Service, E. (2012). Phonological and sensory short-term memory are correlates and both affected in developmental dyslexia. Reading and Writing, 25(9), 2247–2273.

    Google Scholar 

  • Lefly, D. L., & Pennington, B. F. (2000). Reliability and validity of the adult reading history questionnaire. Journal of Learning Disabilities, 33(3), 286–296.

    Google Scholar 

  • Lezak, M. D., Howieson, D. B., Loring, D. W., Hannay, H. J., & Fischer, J. S. (2004). Neuropsychological assessment (4th ed.). New York: Oxford University Press.

    Google Scholar 

  • Lieberman, M. D., Chang, G. Y., Chiao, J., Bookheimer, S. Y., & Knowlton, B. J. (2004). An event-related fMRI study of artificial grammar learning in a balanced chunk strength design. Journal of Cognitive Neuroscience, 16(3), 427–438.

    Google Scholar 

  • Lundberg, I. (2002). Second language learning and reading with the additional load of dyslexia. Annals of Dyslexia, 52, 165–187.

    Google Scholar 

  • Maisog, J. M., Einbinder, E. R., Flowers, D. L., Turkeltaub, P. E., & Eden, G. F. (2008). A meta-analysis of functional neuroimaging studies of dyslexia. In G. F. Eden & D. L. Flower (Eds.), Learning, skill acquisition, reading, and dyslexia (Vol. 1145, pp. 237–259). Oxford: Blackwell Publishing.

    Google Scholar 

  • Menghini, D., Finzi, A., Benassi, M., Bolzani, R., Facoetti, A., Giovagnoli, S., et al. (2010). Different underlying neurocognitive deficits in developmental dyslexia: A comparative study. Neuropsychologia, 48(4), 863–872.

    Google Scholar 

  • Menghini, D., Hagberg, G. E., Caltagirone, C., Petrosini, L., & Vicari, S. (2006). Implicit learning deficits in dyslexic adults: An fMRI study. NeuroImage, 33(4), 1218–1226.

    Google Scholar 

  • Molinari, M., Leggio, M. G., Solida, A., Ciorra, R., Misciagna, S., Silveri, M. C., et al. (1997). Cerebellum and procedural learning: evidence from focal cerebellar lesions. Brain, 120(10), 1753–1762.

    Google Scholar 

  • Morais, J. (2003). Levels of phonological representation in skilled reading and in learning to read. Reading & Writing, 16(1), 123–151.

    Google Scholar 

  • Nevala, J., Kairaluoma, L., Ahonen, T., Aro, M., & Holopainen, L. (2006). Lukemis- ja kirjoittamistaitojen yksilötestistö nuorille ja aikuisille (Standardization version ed.). Jyväskylä: Niilo Mäki Instituutti.

    Google Scholar 

  • Newport, E. L. (1990). Maturational constraints on language learning. Cognitive Science, 14(1), 11–28.

    Google Scholar 

  • Nicolson, R. I., Fawcett, A. J., Berry, E. L., Jenkins, I. H., Dean, P., & Brooks, D. J. (1999). Association of abnormal cerebellar activation with motor learning difficulties in dyslexic adults. Lancet, 353(9165), 1662–1667.

    Google Scholar 

  • Nicolson, R. I., Fawcett, A. J., & Dean, P. (2001). Dyslexia, development and the cerebellum. Trends in Neurosciences, 24(9), 515–516.

    Google Scholar 

  • Nicolson, R. I., & Fawcett, A. J. (2007). Procedural learning difficulties: Reuniting the developmental disorders? Trends in Neurosciences, 30(4), 135–141.

    Google Scholar 

  • Nigg, J. T., & Casey, B. J. (2005). An integrative theory of attention-deficit/hyperactivity disorder based on the cognitive and affective neurosciences. Development and Psychopathology, 17(3), 785–806.

    Google Scholar 

  • Nissen, M. J., & Bullemer, P. (1987). Attentional requirements of learning: Evidence from performance measures. Cognitive Psychology, 19(1), 1–32.

    Google Scholar 

  • Orban, P., Lungu, O., & Doyon, J. (2008). Motor sequence learning and developmental dyslexia. Annals of the New York Academy of Sciences, 1145, 151–172.

    Google Scholar 

  • Pascual-Leone, A., Grafman, J., Clark, K., Stewart, M., Massaquoi, S., Lou, J. S., et al. (1993). Procedural learning in Parkinson’s disease and cerebellar degeneration. Annals of Neurology, 34(4), 594–602.

    Google Scholar 

  • Pavlidou, E. V., Kelly, M. L., & Williams, J. M. (2010). Do children with developmental dyslexia have impairments in implicit learning? Dyslexia, 16(2), 143–161.

    Google Scholar 

  • Pavlidou, E. V., Williams, J. M., & Kelly, L. M. (2009). Artificial grammar learning in primary school children with and without developmental dyslexia. Annals of Dyslexia, 59(1), 55–77.

    Google Scholar 

  • Pelli, D. G. (1997). The video toolbox software for visual psychophysics: Transforming numbers into movies. Leiden: PAYS-BAS: Brill.

    Google Scholar 

  • Pennington, B. F. (2006). From single to multiple deficit models of developmental disorders. Cognition, 101(2), 385–413.

    Google Scholar 

  • Pennington, B. F., & Bishop, D. V. M. (2009). Relations among speech, language, and reading disorders. Annual Review of Psychology, 60, 283–306.

    Google Scholar 

  • Petersson, K. M., Forkstam, C., & Ingvar, M. (2004). Artificial syntactic violations activate Broca’s region. Cognitive Science, 28(3), 383–407.

    Google Scholar 

  • Pothos, E. M., & Kirk, J. (2004). Investigating learning deficits associated with dyslexia. Dyslexia, 10(1), 61–76.

    Google Scholar 

  • Pothos, E. M., & Wood, R. L. (2009). Separate influences in learning: Evidence from artificial grammar learning with traumatic brain injury patients. Brain Research, 1275, 67–72.

    Google Scholar 

  • Pretz, J. E., Totz, K. S., & Kaufman, S. B. (2010). The effects of mood, cognitive style, and cognitive ability on implicit learning. Learning and Individual Differences, 20(3), 215–219.

    Google Scholar 

  • Pugh, K. R., Frost, S. J., Sandak, R., Landi, N., Moore, D., Della Porta, G., et al. (2010). Mapping the word reading circuitry in skilled and disabled readers. In P. Cornelissen, P. Hansen, M. Kringelbach, & K. Pugh (Eds.), The neural basis of reading (pp. 281–306). Oxford: Oxford University Press.

  • Ramus, F., & Szenkovits, G. (2008). What phonological deficit? The Quarterly Journal of Experimental Psychology, 61, 129–141.

    Google Scholar 

  • Reber, A. S. (1967). Implicit learning of artificial grammars. Journal of Verbal Learning and Verbal Behavior, 6(6), 855–863.

    Google Scholar 

  • Richlan, F., Kronbichler, M., & Wimmer, H. (2009). Functional abnormalities in the dyslexic brain: A quantitative meta-analysis of neuroimaging studies. Human Brain Mapping, 30(10), 3299–3308.

    Google Scholar 

  • Roodenrys, S., & Dunn, N. (2008). Unimpaired implicit learning in children with developmental dyslexia. Dyslexia, 14(1), 1–15.

    Google Scholar 

  • Rosas, R., Ceric, F., Tenorio, M., Mourgues, C., Thibaut, C., Hurtado, E., et al. (2010). ADHD children outperform normal children in an artificial grammar implicit learning task: ERP and RT evidence. Consciousness and Cognition, 19(1), 341–351.

    Google Scholar 

  • Rüsseler, J., Gerth, I., & Munte, T. F. (2006). Implicit learning is intact in adult developmental dyslexic readers: Evidence from the serial reaction time task and artificial grammar learning. Journal of Clinical and Experimental Neuropsychology, 28(5), 808–827.

    Google Scholar 

  • Räsänen, P. (2004). RMAT—Laskutaidon testi 9–12 -vuotiaille. Jyväskylä: Niilo Mäki Instituutti.

    Google Scholar 

  • Service, E., Maury, S., & Luotoniemi, E. (2007). Individual differences in phonological learning and verbal STM span. Memory & Cognition, 35(5), 1122–1135.

    Google Scholar 

  • Shin, J. C., & Ivry, R. B. (2003). Spatial and temporal sequence learning in patients with parkinson’s disease or cerebellar lesions. Journal of Cognitive Neuroscience, 15(8), 1232–1243.

    Google Scholar 

  • Snowling, M. J. (2000). Dyslexia (2nd ed.). Oxford: Blackwell Publishers.

    Google Scholar 

  • Snowling, M. J. (2008). Specific disorders and broader phenotypes: The case of dyslexia. Quarterly Journal of Experimental Psychology, 61, 142–156.

    Google Scholar 

  • Sparks, R. L., & Ganschow, L. (1991). Foreign language learning differences: Affective or native language aptitude differences. The Modern Language Journal, 75(1), 3–16.

    Google Scholar 

  • Spencer, R. M. C., & Ivry, R. B. (2009). Sequence learning is preserved in individuals with cerebellar degeneration when the movements are directly cued. Journal of Cognitive Neuroscience, 21(7), 1302–1310.

    Google Scholar 

  • Squire, L. R., & Knowlton, B. J. (2000). The medial temporal lobe, the hippocampus, and the memory systems of the brain. In M. S. Gazzaniga (Ed.), The new cognitive neurosciences (pp. 765–780). Cambridge: MIT Press.

    Google Scholar 

  • Stoodley, C. J., Harrison, E. P. D., & Stein, J. F. (2006). Implicit motor learning deficits in dyslexic adults. Neuropsychologia, 44(5), 795–798.

    Google Scholar 

  • Stoodley, C. J., Ray, N. J., Jack, A., & Stein, J. F. (2008). Implicit Learning in Control, Dyslexic, and Garden-Variety Poor Readers. Learning, Skill Acquisition, Reading, and Dyslexia, 1145, 173–183.

    Google Scholar 

  • Swan, D., & Goswami, U. (1997a). Phonological awareness deficits in developmental dyslexia and the phonological representations hypothesis. Journal of Experimental Child Psychology, 66(1), 18–41.

    Google Scholar 

  • Swan, D., & Goswami, U. (1997b). Picture naming deficits in developmental dyslexia: The phonological representations hypothesis. Brain & Language, 56(3), 334–353.

    Google Scholar 

  • Tallal, P. (1980). Auditory temporal perception, phonics, and reading disabilities in children. Brain & Language, 9(2), 182–198.

    Google Scholar 

  • Udden, J., Folia, V., Forkstam, C., Ingvar, M., Fernandez, G., Overeem, S., et al. (2008). The inferior frontal cortex in artificial syntax processing: An rTMS study. Brain Research, 1224, 69–78.

    Google Scholar 

  • Ullman, M. T. (2004). Contributions of memory circuits to language: the declarative/procedural model. Cognition, 92(1–2), 231–270.

    Google Scholar 

  • Ullman, M. T., & Pierpont, E. I. (2005). Specific language impairment is not specific to language: the procedural deficit hypothesis. Cortex, 41(3), 399–433.

    Google Scholar 

  • Valera, E. M., Faraone, S. V., Murray, K. E., & Seidman, L. J. (2007). Meta-analysis of structural imaging findings in attention-deficit/hyperactivity disorder. Biological Psychiatry, 61(12), 1361–1369.

    Google Scholar 

  • Vicari, S., Finzi, A., Menghini, D., Marotta, L., Baldi, S., & Petrosini, L. (2005). Do children with developmental dyslexia have an implicit learning deficit? Journal of Neurology, Neurosurgery, and Psychiatry, 76(10), 1392–1397.

    Google Scholar 

  • Vicari, S., Marotta, L., Menghini, D., Molinari, M., & Petrosini, L. (2003). Implicit learning deficit in children with developmental dyslexia. Neuropsychologia, 41(1), 108–114.

    Google Scholar 

  • Virsu, V., Laasonen, M., & Lahti-Nuuttila, P. (2003). Crossmodal temporal processing impairment increases with age in developmental dyslexia. Neuroscience Letters, 336(3), 151–154.

    Google Scholar 

  • Vloet, T. D., Marx, I., Kahraman-Lanzerath, B., Zepf, F. D., Herpertz-Dahlmann, B., & Konrad, K. (2010). Neurocognitive Performance in Children with ADHD and OCD. Journal of Abnormal Child Psychology, 38(7), 961–969.

    Google Scholar 

  • Waber, D. P., Marcus, D. J., Forbes, P. W., Bellinger, D. C., Weiler, M. D., Sorensen, L. G., et al. (2003). Motor sequence learning and reading ability: Is poor reading associated with sequencing deficits? Journal of Experimental Child Psychology, 84(4), 338–354.

    Google Scholar 

  • Ward, M. F., Wender, P. H., & Reimherr, F. W. (1993). The Wender Utah Rating Scale: an aid in the retrospective diagnosis of childhood attention deficit hyperactivity disorder. The American journal of psychiatry, 150(6), 885–890.

    Google Scholar 

  • Wechsler, D. (2005). Wechsler adult intelligence scale—Third edition: Manual. Helsinki: Psykologien Kustannus Oy.

    Google Scholar 

  • Wechsler, D. (2008). WMS-III manual. Helsinki: Psykologien Kustannus oy.

    Google Scholar 

  • Willcutt, E. G., & Pennington, B. F. (2000). Psychiatric comorbidity in children and adolescents with reading disability. Journal of Child Psychology and Psychiatry, 41(8), 1039–1048.

    Google Scholar 

  • Willcutt, E. G., Pennington, B. F., & DeFries, J. C. (2000). Twin study of the etiology of comorbidity between reading disability and attention-deficit/hyperactivity disorder. American Journal of Medical Genetics, 96(3), 293–301.

    Google Scholar 

  • Willcutt, E. G., Pennington, B. F., Smith, S. D., Cardon, L. R., Gayán, J., Knopik, V. S., et al. (2002). Quantitative trait locus for reading disability on chromosome 6p is pleiotropic for attention-deficit/hyperactivity disorder. Journal of Medical Genetics, 114(3), 260–268.

    Google Scholar 

  • Wolf, M. (1986). Rapid alternating stimulus naming in the developmental dyslexias. Brain & Language, 27(2), 360–379.

    Google Scholar 

  • World Health Organization. (1998). The international statistical classification of diseases and related health problems, 10th revision (2nd ed.). Helsinki: World Health Organization/Stakes.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marja Laasonen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laasonen, M., Väre, J., Oksanen-Hennah, H. et al. Project DyAdd: Implicit learning in adult dyslexia and ADHD. Ann. of Dyslexia 64, 1–33 (2014). https://doi.org/10.1007/s11881-013-0083-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11881-013-0083-y

Keywords

Navigation