Skip to main content

Advertisement

Log in

Predictive modeling of PM2.5 using soft computing techniques: case study—Faridabad, Haryana, India

  • Published:
Air Quality, Atmosphere & Health Aims and scope Submit manuscript

Abstract

Particulate matter has a detrimental consequence on the health of living organisms throughout the world and predicting their concentration is very imperative to assess their impact on human health. Faridabad is the most populated and largest city of Haryana, India, and the current study was designed to foresee the PM2.5 content by different modeling techniques: (1) support vector machine (SVM), (ii) random forest (RF), (iii) artificial neural network (ANN), (iv) M5P model, and (v) Gaussian process regression (GP). Collected data (659 observations) from May 2015 to May 2018 were used to develop the models. Parameters such as temperature (T), ground-level ozone (O3), sulfur dioxide (SO2), nitrogen dioxide (NO2), nitric oxide (NO), NOx, wind speed (WS), wind direction (WD), relative humidity (RH), bar pressure (BP), and solar radiation (SR) are used as input parameters for prediction of PM2.5. The results of all the models suggested that RF model with testing correlation coefficient (CC) 0.8312, mean absolute error (MAE) 30.7757, R2 (correlation of determination) 0.6909, and root mean square error (RMSE) 44.6947 is the best estimator for appraisal of PM2.5 followed by SVM, GP, M5P, and ANN models. The sensitivity analysis results indicated that wind speed is the utmost influencing parameter for the estimation of PM2.5. Abilities of different models were compared and RF was established as the best technique based on assessment criteria. We recommend more studies employing RF and other techniques as hybrids that lead to better models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parveen Sihag.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sihag, P., Kumar, V., Afghan, F.R. et al. Predictive modeling of PM2.5 using soft computing techniques: case study—Faridabad, Haryana, India. Air Qual Atmos Health 12, 1511–1520 (2019). https://doi.org/10.1007/s11869-019-00755-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11869-019-00755-z

Keywords

Navigation