Skip to main content
Log in

Modeling of air pollutants using least square support vector regression, multivariate adaptive regression spline, and M5 model tree models

  • Published:
Air Quality, Atmosphere & Health Aims and scope Submit manuscript

Abstract

This study investigates the applicability of three different soft computing methods, least square support vector regression (LSSVR), multivariate adaptive regression splines (MARS), and M5 Model Tree (M5-Tree), in forecasting SO2 concentration. These models were applied to monthly data obtained from Janakpuri, Nizamuddin, and Shahzadabad, located in Delhi, India. The models were compared with each other using the cross validation method with respect to root mean square error, mean absolute error, and correlation coefficient. According to the comparison, LSSVR provided better accuracy than the other models, while the MARS model was found to be the second best model in forecasting monthly SO2 concentration. Results indicated that the applied models gave better forecasting accuracy in Janakpuri station than the other stations. The results were also compared with previous studies and satisfactory results were obtained from three methods in modeling SO2 concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akkoyunlu A, Yetilmezsoy K, Erturk F, Oztemel E (2010) A neural network-based approach for the prediction of urban SO2 concentrations in the Istanbul metropolitan area. Int J Environ Pollut 40(4):301–321

    Article  CAS  Google Scholar 

  • Andres JD, Lorca P, Juez FJ, Sánchez-Lasheras F (2010) Bankruptcy forecasting: a hybrid approach using Fuzzy c-means clustering and Multivariate Adaptive Regression Splines (MARS). Expert Syst Appl 38:1866–1875

    Article  Google Scholar 

  • Aneja VP, Agarwal A, Roelle PA, Phillips SB, Tong Q, Watkins N, Yablonsky R (2001) Measurements and analysis of criteria pollutants in New Delhi, India. Environ Int 27(1):35–42

    Article  CAS  Google Scholar 

  • Antanasijević DZ, Pocajt VV, Povrenović DS, Ristić MD, Perić-Grujić AA (2013) PM10 emission forecasting using artificial neural networks and genetic algorithm input variable optimization. Sci Total Environ 443:511–519

    Article  Google Scholar 

  • Bera P, Prasher SO, Patel RM, Madani A, Lacroix R, Gaynor JD, Tan SC, Kim SH (2006) Application of MARS in simulating pesticide concentrations in soil. Trans Am Soc Agric Eng 49:297–307

    CAS  Google Scholar 

  • Corchado E, Herrero E (2011) Neural visualization of network traffic data for intrusion detection. Appl Soft Comput 11(2):2042–2056 CrossRef

    Article  Google Scholar 

  • Corchado E, Arroyo A, Tricio V (2011) Soft computing models to identify typical meteorological days. Logic J IGPL 19(2):373–383 MathSciNet CrossRef

    Article  Google Scholar 

  • Cortes C, Vapnik V (1995) Support vector networks. Mach Learn 20:273–297

    Google Scholar 

  • Etemad-Shahidi A, Mahjoobi J (2009) Comparison between M5′ model tree and neural networks for prediction of significant wave height in Lake Superior. Ocean Eng 36:1175–1181. doi:10.1016/j.oceaneng.2009.08.008

  • EPA: Environmental Protection Agency Clean Air Interstate Rule. Accessed December 10, 2015a. (http://earthobservatory.nasa.gov/IOTD/view.php?id=87182)

  • EPA: Environmental Protection Agency Acid Rain Program. Accessed December 10, 2015b. (http://earthobservatory.nasa.gov/IOTD/view.php?id=82626)

  • Friedman JH (1991) Multivariate adaptive regression splines. Ann Stat 19:1–67

    Article  Google Scholar 

  • Ganguly D, Jayaraman A, Rajesh TA, Gadhavi H (2006) Wintertime aerosol properties during foggy and nonfoggy days over Urban Center Delhi and their implications for shortwave radiative forcing. J Geophys Res 111:D15217. doi:10.1029/2005JD007029

    Article  Google Scholar 

  • Gennaro G, Trizio L, Gilio A, Pey J, Pérez N, Cusack M, Alastuey A, Querol X (2013) Neural network model for the prediction of PM10 daily concentrations in two sites in the Western Mediterranean. Sci Total Environ 463-464:875–883

    Article  Google Scholar 

  • Goyal P (2003) Present scenario of air quality in Delhi: a case study of CNG implementation. Atmos Environ 37(38):5423–5431

    Article  Google Scholar 

  • Goyal MK, Bharti B, Quilty J, Adamowski J, Pandey A (2014) Modeling of daily pan evaporation in sub-tropical climates using ANN, LS-SVR, Fuzzy Logic, and ANFIS. Expert 516 Syst Appl 41(11):5267–5276

    Article  Google Scholar 

  • Gurjar BR, Van Aardenne JA, Lelieveld J, Mohan M (2004) Emission estimates and trends (1990–2000) for megacity Delhi and implications. Atmos Environ 38(33):5663–5681

    Article  CAS  Google Scholar 

  • Gurjar BR, Jain A, Sharma A, Agarwal A, Gupta P, Nagpure AS, Lelieveld J (2010) Human health risks in megacities due to air pollution. Atmos Environ 44(36):4606–4613

    Article  CAS  Google Scholar 

  • Guven A, Kisi O (2011) Daily pan evaporation modeling using linear genetic programming technique. Irrig Sci 29(2):135–145

    Article  Google Scholar 

  • Kim S, Shiri J, Kisi O (2012) Pan evaporation modeling using neural computing approach for different climatic zones. Water Resour Manag 26(11):3231–3249

    Article  Google Scholar 

  • Kim S, Shiri J, Singh VP, Kisi Ö, Landeras G (2015) Predicting daily pan evaporation by soft computing models with limited climatic data. Hydrol Sci J 60(6):1120–1136

    Article  Google Scholar 

  • Kisi O (2009a) Daily pan evaporation modelling using multi-layer perceptrons and radial basis neural networks. Hydrol Process 23(2):213–223

    Article  Google Scholar 

  • Kisi O (2009b) Fuzzy genetic approach for modeling reference evapotranspiration. J irrig 538 drainage eng 136(3):175–183

    Article  Google Scholar 

  • Kisi O (2015) Pan evaporation modeling using least square support vector machine, multivariate adaptive regression splines and M5 model tree. J Hydrol 528:312–320

    Article  Google Scholar 

  • Kisi O, Cengiz TM (2013) Fuzzy genetic approach for estimating reference evapotranspiration of Turkey: Mediterranean region. Water Resour Manag 27:3541–3553

    Article  Google Scholar 

  • Kisi, O and Parmar, K. S, 2016. Application of least square support vector machine and multivariate adaptive regression spline models in long term prediction of river water pollution. J Hydrology.

  • Kisi O, Tombul M (2013) Modeling monthly pan evaporations using fuzzy genetic approach. J Hydrol 477:203–212

    Article  Google Scholar 

  • Kisi O, Genc O, Dinc S, Zounemat-Kermani M (2016) Daily pan evaporation modeling using chi-squared automatic interaction detector, neural networks, classification and regression tree. Comput Elect Agr 122:112–117

    Article  Google Scholar 

  • Krotkov NA, McLinden CA, Li C, Lamsal LN, Celarier EA, Marchenko SV, Swartz WH, Bucsela EJ, Joiner J, Duncan BN, Boersma KF, Veefkind JP, Levelt PF, Fioletov VE, Dickerson RR, He H, Lu Z, Streets DG (2016) Aura OMI observations of regional SO2 and NO2 pollution changes from 2005 to 2015. Atmos Chem Phys 16:4605–4629. doi:10.5194/acp-16-4605-2016

    Article  CAS  Google Scholar 

  • Mitchell TM (1997) Machine learning. The McGraw-Hill Companies, Inc., New York 414

    Google Scholar 

  • Mohan M, Kandya A (2007) An analysis of the annual and seasonal trends of air quality index of Delhi. Environ Monit Assess 131(1–3):267–277

    Article  CAS  Google Scholar 

  • Pal M, Deswal S (2009) M5 model tree based modelling of reference evapotranspiration. Hydrol Process 23:1437–1443

    Article  Google Scholar 

  • Parmar KS, Bhardwaj R (2014) River water prediction modeling using neural networks, fuzzy and wavelet coupled model. Water Resour Manage 29(1):17–33

    Article  Google Scholar 

  • Parmar KS, Soni K, Kumar N, Kapoor S (2016) Statistical variability comparison in MODIS and AERONET derived aerosol optical depth over Indo-Gangetic Plains using time series modeling. Sci Total Environ:553

  • Prasad AK, Singh S, Chauhan SS, Srivastava MK, Singh RP, Singh R (2007) Aerosol radiative forcing over the Indo-Gangetic Plains during major dust storms. Atmos Environ 41(6289–6301):2007

    Google Scholar 

  • Quinlan JR (1992) Learning with continuous classes. In proceedings of the Fifth Australian Joint Conference on Artificial Intelligence, Hobart, Australia, 16–18 November. World Scientific, Singapore, pp 343–348

    Google Scholar 

  • Rizwan SA, Nongkynrith B, Gupta SK (2013) Air pollution in Delhi: its magnitude and effects on health. Indian J Community Med 38:4–8 http://www.ijcm.org.in/text.asp?2013/38/1/4/106617

    Article  Google Scholar 

  • Sahin U, Ucan ON, Bayat C, Oztorun N (2005) Modeling of SO2 distribution in Istanbul using artificial neural networks. Environ Model Assess 10:135–142

    Article  Google Scholar 

  • Sahin UA, Ucan ON, Bayat C, Tolluoglu O (2011) A new approach to prediction of SO2 and PM10 concentrations in Istanbul, Turkey: cellular neural network (CNN). Environ Forensic 12(3):253–269

    Article  CAS  Google Scholar 

  • Seinfeld JH, Pandis SN (2006) Atmospheric chemistry and physics: from air pollution to climate change, vol 2006, 2nd edn. John Wiley & Sons, Hoboken

    Google Scholar 

  • Sephton P (2001) Forecasting recessions: can we do better on MARS? Federal Reserve Bank of St. Louis Rev 83:39–49

    Google Scholar 

  • Shafaei M, Kisi O (2016) Lake level forecasting using wavelet-SVR, wavelet-ANFIS and wavelet-ARMA conjunction models. Water Resour Manag 30(1):79–97. doi:10.1007/s11269-015-1147-z

    Article  Google Scholar 

  • Singh S, Nath S, Kohli R, Singh R (2005) Aerosols over Delhi during pre-monsoon months: characteristics and effects on surface radiation forcing. Geophys Res Lett 32:L13808

    Article  Google Scholar 

  • Singh S, Soni K, Bano T, Tanwar RS, Nath S, Arya BC (2010) Clear-sky direct aerosol radiative forcing variations over mega-city Delhi. Ann Geophys 28:1157–1166

    Article  Google Scholar 

  • Smola JA, Bernhard S (2004) A tutorial on support vector regression. Stat Comput 14:199–222

    Article  Google Scholar 

  • Solomatine DP, Xue Y (2004) M5 model trees compared to neural networks: application to flood forecasting in the upper reach of the Huai River in China. J Hydrol Eng 9:491–501

    Article  Google Scholar 

  • Soni K, Kapoor S, Parmar KS, Kaskaoutis DG (2014) Statistical analysis of aerosols over the Gangetic–Himalayan region using ARIMA model based on long-term MODIS observations. Atmos Res 149:174–119. doi:10.1016/j.atmosres.2014.05.025

    Article  CAS  Google Scholar 

  • Soni K, Parmar KS, Kapoor S (2015) Time series model prediction and trend variability of aerosol optical depth over coal mines in India. Environ Sci Pollut Res 22:3652–3671

    Article  CAS  Google Scholar 

  • Suykens JAK (2001) Support vector machines: a nonlinear modeling and control perspective. Eur J Control 7:311–327

    Article  Google Scholar 

  • Suykens JAK, Vandewalle J (1999) Least square support vector machine classifiers. Neural Process Lett 9:293–300

    Article  Google Scholar 

  • Vaidya V, Park JH, Arabnia HR, Pedrycz W, Peng S (2012) Bio-inspired computing for hybrid information technology. Soft Comput 16(3):367–368

    Article  Google Scholar 

  • Voukantsis D, Karatzas K, Kukkonen J, Räsänen T, Karppinen A, Kolehmainen M (2011) Intercomparison of air quality data using principal component analysis, and forecasting of PM10 and PM2.5 concentrations using artificial neural networks, in Thessaloniki and Helsinki. Sci Total Environ 409:1266–1276

    Article  CAS  Google Scholar 

  • Wanga P, Liu Y, Qin Z, Zhang G (2015) A novel hybrid forecasting model for PM10 and SO2 daily concentrations. Sci Total Environ 505:1202–1212

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Central Pollution Control Board (CPCB), Government of India, for providing the research data and Dr. B. R. Ambedkar National Institute of Technology, Jalandhar (Government of India) and IKG Punjab Technical University (Government of Punjab) for providing research facilities. The second author is also thankful to Prof. Rashmi Bhardwaj, Guru Gobind Singh Indraprastha University, for her motivation and astute guidance. The third author (KS) is grateful to the Director, CSIR-NPL.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ozgur Kisi or Kulwinder Singh Parmar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kisi, O., Parmar, K.S., Soni, K. et al. Modeling of air pollutants using least square support vector regression, multivariate adaptive regression spline, and M5 model tree models. Air Qual Atmos Health 10, 873–883 (2017). https://doi.org/10.1007/s11869-017-0477-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11869-017-0477-9

Keywords

Navigation