Skip to main content

Advertisement

Log in

Preservice teachers’ knowledge of interdisciplinary pedagogy: the case of elementary mathematics–science integrated lessons

  • Original Article
  • Published:
ZDM Aims and scope Submit manuscript

Abstract

The purpose of the study is to explore how elementary preservice teachers’ mathematics–science integrated teaching strategies changed as a result of participating in exemplary interdisciplinary activities with multiple themes across school curricula. The participating elementary preservice teachers (n = 28) were recruited for this study from the College of Education students enrolled at a medium-sized southwestern research university in the United States. A qualitative methodology with pre-and-post data collection from open-ended surveys was used in the current study to explore the development of preservice teachers’ mathematics teaching strategies with connections to science themed activities before and after an 8-week intervention. In general, the results from the pre-and-post surveys revealed that the preservice teachers’ interdisciplinary knowledge of using science-themed activities as instructional approaches for teaching mathematics had remarkable changes across all four science content areas including physics, chemistry, biology, and environmental and space science. This study provided additional empirical evidence on how contextualized mathematics educational activities, in the current case using the association between science and mathematics, can be used as effective teacher education resources for developing teachers’ capacity for designing mathematics lessons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • American Association for the Advancement of Science. (1998). National science education standards. Washington, DC: National Academy Press.

    Google Scholar 

  • An, S. A., & Tillman, D. (2014). Elementary teachers’ design of arts based teaching: Investigating the possibility of developing mathematics–music integrated curriculum. Journal of Curriculum Theorizing, 30(2), 20–38.

    Google Scholar 

  • An, S., Tillman, D., & Paez, C. (2015). Music-themed mathematics education as a strategy for improving elementary preservice teachers’ mathematics pedagogy and teaching self-efficacy. Journal of Mathematics Education at Teachers College, 6(1), 9–24.

    Google Scholar 

  • An, S. A., Tillman, D., Robertson, W., Zhang, M., Siemssen, A., & Paez, C. (2016a). Astronauts in outer space teaching students science: Comparing Chinese and American implementations of space-to-earth virtual classrooms. European Journal of Science and Mathematics Education, 4(3), 397–412.

    Google Scholar 

  • An, S. A., Tillman, D. A., Zhang, M., Robertson, W., & Tinajero, J. (2016b). Hispanic preservice teachers’ peer evaluations of interdisciplinary curriculum development: A self-referenced comparison between monolingual generalists and bilingual generalists. Journal of Hispanic Higher Education, 15(4), 291–309.

    Article  Google Scholar 

  • An, S. A., Tillman, D., Shaheen, A., & Boren, R. (2014). Preservice teachers' perceptions about teaching mathematics through music. Interdiscip J Teach Learn, 4(3), 150–171.

    Google Scholar 

  • Ball, D. L. (1990). Breaking with experience in learning to teach mathematics: the role of a preservice methods course. learn math, 10(2), 10–16.

    Google Scholar 

  • Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching what makes it special? Journal of teacher education, 59(5), 389–407.

    Article  Google Scholar 

  • Baumert, J., Kunter, M., Blum, W., Brunner, M., Voss, T., Jordan, A., et al. (2010). Teachers’ mathematical knowledge, cognitive activation in the classroom, and student progress. American Educational Research Journal, 47, 133–180.

    Article  Google Scholar 

  • Berlin, D. F., & Lee, H. (2005). Integrating science and mathematics education: Historical analysis. School Science and Mathematics, 105(1), 15–24.

    Article  Google Scholar 

  • Berlin, D. F., & White, A. L. (1994). The Berlin-White integrated science and mathematics model. School Science and Mathematics, 94(1), 2–4.

    Article  Google Scholar 

  • Blomhøj, M., & Kjeldsen, T. H. (2009). Project organised science studies at university level: Exemplarity and interdisciplinarity. ZDM - The International Journal on Mathematics Education, 41(1–2), 183–198.

    Article  Google Scholar 

  • Borko, H., & Putnam, R. (1996). Learning to teach. In D. Berliner & R. Calfee (Eds.), Handbook of educational psychology (pp. 673–708). New York: Macmillan.

    Google Scholar 

  • Cady, J. A., & Rearden, K. (2007). Pre-service teachers’ beliefs about knowledge, mathematics, and Science. School Science and Mathematics, 107(6), 237–245.

    Article  Google Scholar 

  • Cochran, K. F., King, R. A., & DeRuiter, J. A. (1991). Pedagogical content knowledge: a tentative model for teacher preparation. East Lansing, MI: National Center for Research on Teacher Learning.

    Google Scholar 

  • Corbin, J., & Strauss, A. (2008). Basics of qualitative research: Techniques and procedures for developing grounded theory. Thousand Oaks: California, CA, USA.

    Book  Google Scholar 

  • Darling-Hammond, L., & Baratz-Snowden, J. (2007). A good teacher in every classroom: Preparing the highly qualified teachers our children deserve. Educational Horizons, 85(2), 111–132.

    Google Scholar 

  • Davison, D. M., Miller, K. W., & Metheny, D. L. (1995). What does integration of science and mathematics really mean? School science and mathematics, 95(5), 226–230.

    Article  Google Scholar 

  • Drake, S. M. (1991). How our team dissolved the boundaries. Educational Leadership, 49(2), 20–22.

    Google Scholar 

  • Drake, S., & Burns, D. (2004). Meeting Standards through Integrated Curriculum. Alexandria VA: Association for Supervision and Curriculum Development.

    Google Scholar 

  • Fogarty, R. (1991). Ten ways to integrate curriculum. Educational Leadership, 49(2), 61–65.

    Google Scholar 

  • Frykholm, J., & Glasson, G. (2005). Connecting science and mathematics instruction: Pedagogical context knowledge for teachers. School Science and Mathematics, 105(3), 127–141.

    Article  Google Scholar 

  • Fuller, R. A. (1997). Elementary teachers' pedagogical content knowledge of mathematics. Mid-Western Educational Res, 10(2), 9–16.

    Google Scholar 

  • Gresham, G. (2008). Mathematics anxiety and mathematics teacher efficacy in elementary pre-service teachers. Teaching Education, 19(3), 171–184.

    Article  Google Scholar 

  • Hattie, J. (2009). The black box of tertiary assessment: An impending revolution. In L. H. Meyer, S. Davidson, H. Anderson, R. Fletcher, P. M. Johnston, & M. Rees (Eds.), Tertiary assessment and higher education student outcomes: Policy, practice and research (pp. 259–275). Wellington, NZ: Ako Aotearoa & Victoria University of Wellington.

    Google Scholar 

  • Hudson, P. B., English, L. D., & Dawes, L. A. (2014). Curricula integration: identifying and locating engineering education across the Australian curriculum. Curriculum Perspectives, 34(1), 43–50.

    Google Scholar 

  • Kim, D., & Bolger, M. (2016). Analysis of Korean elementary pre-service teachers’ changing attitudes about integrated STEAM pedagogy through developing lesson plans. International Journal of Science and Mathematics Education, 1–19.

  • Kiray, S. A. (2012). A new model for the integration of science and mathematics: The balance model. Energy Education Science and Technology, Social and Educational Studies, 4(3), 1181–1196.

    Google Scholar 

  • Knoblauch, D., & Hoy, A. W. (2008). “Maybe I can teach those kids”. The influence of contextual factors on student teachers’ efficacy beliefs. Teaching and Teacher Education, 24(1), 166–179.

    Article  Google Scholar 

  • Labaree, D. F. (2008). The winning ways of a losing strategy: Educationalizing social problems in the United States. Educational Theory, 58(4), 447–460.

    Article  Google Scholar 

  • Lam, C. C., Alviar-Martin, T., Adler, S. A., & Sim, J. B. (2013). Curriculum integration in Singapore: teachers’ perspectives and practice. Teaching and Teacher Education, 31, 23–34.

    Article  Google Scholar 

  • Magnusson, S., Krajcik, L., & Borko, H. (1999). Nature, sources and development of pedagogical content knowledge. In J. Gess-Newsome & N. G. Lederman (Eds.), Examining pedagogical content knowledge (pp. 95–132). Dordrecht, The Netherlands: Kluwer.

    Google Scholar 

  • Mishra, P., & Koehler, M. (2006). Technological pedagogical content knowledge: A framework for teacher knowledge. The Teachers College Record, 108(6), 1017–1054.

    Article  Google Scholar 

  • National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, VA: Author.

    Google Scholar 

  • National Science Teachers Association. (2003). Standards for science teacher preparation. Arlington, VA.: NSTA.

    Google Scholar 

  • Park, S., & Oliver, J. S. (2008). Revisiting the conceptualisation of pedagogical content knowledge (PCK): PCK as a conceptual tool to understand teachers as professionals. Research in Science Education, 38(3), 261–284.

    Article  Google Scholar 

  • Saçkes, M., Flevares, L. M., Gonya, J., & Trundle, K. C. (2012). Preservice early childhood teachers’ sense of efficacy for integrating mathematics and science: Impact of a methods course. Journal of Early Childhood Teacher Education, 33(4), 349–364.

    Article  Google Scholar 

  • Samson, G. (2014). From writing to doing: The challenges of implementing integration (and interdisciplinarity) in the teaching of mathematics, sciences, and technology. Canadian Journal of Science, Mathematics and Technology Education, 14(4), 346–358.

    Article  Google Scholar 

  • Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational researcher, 15(2), 4–14.

    Article  Google Scholar 

  • Shulman, L. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational Review, 57(1), 1–23.

    Article  Google Scholar 

  • Singham, M. (2003). The achievement gap: Myths and reality. Phi Delta Kappan, 84(8), 586.

    Article  Google Scholar 

  • Sriraman, B., & Knott, L. (2009). The mathematics of estimation: Possibilities for interdisciplinary pedagogy and social consciousness. Interchange, 40(2), 205–223.

    Article  Google Scholar 

  • Swars, S. L., Daane, C. J., & Giesen, J. (2006). Mathematics anxiety and mathematics teacher efficacy: What is the relationship in elementary preservice teachers? Sch Sci Math, 106(7), 306–315.

    Article  Google Scholar 

  • Tillman, D. A., An, S. A., & Boren, R. L. (2015). Assessment of creativity in arts and STEM integrated pedagogy by pre-service elementary teachers. Journal of Technology and Teacher Education, 23(3), 301–327.

    Google Scholar 

  • Treacy, P., & O’Donoghue, J. (2014). Authentic integration: A model for integrating mathematics and science in the classroom. International Journal of Mathematical Education in Science and Technology, 45(5), 703–718.

    Article  Google Scholar 

  • Venville, G., Rennie, L. J., & Wallace, J. (2012). Curriculum integration: Challenging the assumption of school science as powerful knowledge. In Second international handbook of science education (pp. 737–749). Springer Netherlands.

  • Zemelman, S., Daniels, H., & Hyde, A. A. (1993). Best practice: New standards for teaching and learning in America’s schools. Portsmouth, NH: Heinemann.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song A. An.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, S.A. Preservice teachers’ knowledge of interdisciplinary pedagogy: the case of elementary mathematics–science integrated lessons. ZDM Mathematics Education 49, 237–248 (2017). https://doi.org/10.1007/s11858-016-0821-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11858-016-0821-9

Keywords

Navigation