Skip to main content
Log in

Low achieving eighth graders learn to crack word problems: a design research project for aligning a strategic scaffolding tool to students’ mental processes

  • Original Article
  • Published:
ZDM Aims and scope Submit manuscript

Abstract

Topic-specific didactical design research provides means not only to investigate how to learn but also what to learn, i.e., for specifying learning contents by analyzing students’ comprehension processes in detail. This important characteristic of didactical design research is exemplarily shown for students’ difficulties in finding symbolic expressions for word problems, which can often be traced back to deficits in their comprehension strategies. The article presents a design research project on strategic scaffolding for eighth graders with limited language proficiency for specifying fruitful comprehension strategies and enhancing their use. Intensive qualitative investigation of students’ processes was required to align the strategic scaffolding tool, the word problem cracker, to students’ mental processes. Four cycles of design experiments allowed iteratively developing a local theory of learning to write algebraic expressions for multi-step word problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aebli, H., Ruthemann, U., & Staub, F. (1986). Sind Regeln des Problemlösens lehrbar? Zeitschrift für Pädagogik, 32(5), 617–638.

    Google Scholar 

  • Ashcraft, M. H. (1990). Strategic mental processing in children’s mental arithmetic. In D. F. Bjorklund (Ed.), Children’s strategies: contemporary views of cognitive development (pp. 185–211). Hillsdale: Lawrence Erlbaum.

    Google Scholar 

  • Blum, W., & Borromeo Ferri, R. (2009). Mathematical modeling: can it be taught and learnt? Journal of mathematical modelling and application, 1(1), 45–58.

    Google Scholar 

  • Borromeo Ferri, R. (2006). Theoretical and empirical differentiations of phases in the modelling process. Zentralblatt für Didaktik der Mathematik, 38(2), 86–95.

    Article  Google Scholar 

  • Cai, J., Ng, S. F., & Moyer, J. (2011). Developing students’ algebraic thinking in earlier grades. In J. Cai & E. Knuth (Eds.), Early algebraization (pp. 25–42). New York: Springer.

    Chapter  Google Scholar 

  • Capraro, R., Capraro, M., & Rupley, W. (2012). Reading-enhanced word problem solving: a theoretical model. European Journal of Psychology of Education, 27(1), 91–114.

    Article  Google Scholar 

  • Carpenter, T., Kepner, H., Corbitt, M. K., Lindquist, M. M., & Reys., R. E. (1980). Results and Implications of the Second NAEP Mathematics Assessments: Elementary School. Arithmetic Teacher, 27(8), 10–12, 44–47.

  • Collins, A., Brown, J. S., & Newman, S. E. (1989). Cognitive apprenticeship: Teaching the crafts of reading, writing, and mathematics. In L. B. Resnick (Ed.), Knowing, learning, and instruction (pp. 453–494). Hillsdale: Lawrence Erlbaum.

    Google Scholar 

  • Duarte, J., Gogolin, I., & Kaiser, G. (2011). Sprachlich bedingte Schwierigkeiten von mehrsprachigen Schülerinnen und Schülern bei Textaufgaben. In S. Prediger & E. Özdil (Eds.), Mathematiklernen unter Bedingungen der Mehrsprachigkeit (pp. 35–53). Münster: Waxmann.

    Google Scholar 

  • Franke, M., & Ruwisch, S. (2010). Didaktik des Sachrechnens in der Grundschule. Heidelberg: Spektrum.

    Book  Google Scholar 

  • Galbraith, P., & Stillman, G. (2006). A framework for identifying student blockages during transitions in the modelling process. ZDM—The International Journal on Mathematics Education, 38(2), 143–162.

    Article  Google Scholar 

  • Gravemeijer, K., & Cobb, P. (2006). Design research from a learning design perspective. In J. v. d. Akker, K. Gravemeijer, S. McKenney, & N. Nieveen (Eds.), Educational design research (pp. 17–51). London: Routledge.

  • Hannafin, M., Land, S., & Oliver, K. (1999). Open Learning Environments: Foundations, Methods, and Models. In C. M. Reigeluth (Ed.), Instructional-Design Theories and Models (Vol. 2, pp. 115–140). Mahwah: Lawrence Erlbaum.

    Google Scholar 

  • Jorgensen, R. (2011). Language, culture and learning mathematics. In C. Wyatt-Smith, J. Elkins, & S. Gunn (Eds.), Multiple perspectives on difficulties in learning literacy and numeracy (pp. 315–329). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Kintsch, W., & Greeno, J. (1985). Understanding word arithmetic problems. Psychological Review, 92(1), 109–129.

    Article  Google Scholar 

  • Krägeloh, N. (2015). Algebra verstehen, Terme aufstellen - Entwicklung und Erforschung für sprachlich schwache Jugendliche. Ph.D. Thesis in preparation. Supervised by S. Prediger, TU Dortmund (in prep.).

  • Lajoie, S. (2005). Extending the scaffolding metaphor. Instructional Science, 33(5–6), 541–557.

    Article  Google Scholar 

  • Mason, J., Pimm, D., Graham, A., & Gower, N. (1985). Routes to/roots of algebra. Milton Keynes: Open University.

    Google Scholar 

  • Mevarech, Z., Terkieltaub, S., Vinberger, T., & Nevet, V. (2010). The effects of meta-cognitive instruction on third and sixth graders solving word problems. ZDM—The International Journal on Mathematics Education, 42(2), 195–203.

    Article  Google Scholar 

  • Nesher, P., & Teubal, E. (1975). Verbal cues as an interfering factor in verbal problem solving. Educational Studies in Mathematics, 6(1), 41–51.

    Article  Google Scholar 

  • Pólya, G. (1945). How to solve it. Princeton: Princeton University Press.

    Google Scholar 

  • Prediger, S. (2010). Über das Verhältnis von Theorien und wissenschaftlichen Praktiken—am Beispiel von Schwierigkeiten mit Textaufgaben. Journal für Mathematik-Didaktik, 31(2), 167–195.

    Article  Google Scholar 

  • Prediger, S., & Krägeloh, N. (2015). “x-arbitrary means any number, but you do not know which one” The epistemic role of languages while constructing meaning for the variable as generalizers. In A. Halai & P. Clarkson (Eds.), Teaching & Learning Mathematics in Multilingual Classrooms. Rotterdam: Sense Publisher (in press).

  • Prediger, S., Link, M., Hinz, R., Hußmann, S., Thiele, J., & Ralle, B. (2012). Lehr-Lernprozesse initiieren und erforschen. Mathematischer und Naturwissenschaftlicher Unterricht, 65(8), 452–457.

    Google Scholar 

  • Prediger, S., & Zwetzschler, L. (2013). Topic-specific design research with a focus on learning processes. In T. Plomp & N. Nieveen (Eds.), Educational Design Research: Illustrative Cases (pp. 407–424). Enschede: SLO.

    Google Scholar 

  • Renninger, K. A., & List, A. (2012). Scaffolding for learning. In N. Seel (Ed.), Encyclopedia of the Sciences of Learning. New York: Springer.

    Google Scholar 

  • Reusser K. (1990). From Text to Situation to Equation: Cognitive Simulation of Understanding and Solving Mathematical Word Problems. In H. Mandl, E. De Corte, N. Bennet, & H.F. Friedrich (Eds.), Learning and Instruction. European Research in an International Context (vol. II, pp. 477–498). New York: Pergamon.

  • Reusser, K. (1994). Tutoring Mathematical Text Problems: From Cognitive Task Analysis to Didactic Tools. In S. Vosniadou, E. de Corte, & H. Mandl (Eds.), Technology-Based Learning Environments (Vol. 137, pp. 174–182). Berlin: Springer.

    Chapter  Google Scholar 

  • Reusser, K. (1997). Erwerb mathematischer Kompetenzen: Literaturüberblick. In F. Weinert & A. Helmke (Eds.), Entwicklung im Grundschulalter (pp. 141–155). Weinheim: Beltz.

    Google Scholar 

  • Schmidt, A.-C. & Kinkel, P. (2014). Der Stufenplan als Scaffolding-Instrument. Master theses, supervised by S. Prediger, TU Dortmund.

  • Stacey, K., Chick, H., & Kendal, M. (Eds.). (2004). The future of the teaching and learning of algebra: The 12th ICMI Study. Dordrecht: Kluwer.

    Google Scholar 

  • Stam, H. J. (1995). Theory and practice. In C. W. Tolman, F. Cherry, R. van Hezewijk, & I. Lubek (Eds.), Problems of Theoretical Psychology (pp. 24–32). Ontario: Captus.

    Google Scholar 

  • Stern, E. (1993). What makes certain arithmetic word problems involving the comparison of sets so difficult to children? Journal of Educational Psychology, 85, 7–23.

    Article  Google Scholar 

  • Thompson, P. W. (2011). Quantitative reasoning and mathematical modeling. In L. L. Hatfield, S. Chamberlain, & S. Belbase (Eds.), New perspectives and directions for collaborative research in mathematics education (pp. 33–57). Laramie: University of Wyoming Press.

    Google Scholar 

  • Threlfall, J. (2009). Strategies and flexibility in mental calculation. ZDM—The International Journal on Mathematics Education, 41(5), 541–555.

    Article  Google Scholar 

  • Usiskin, Z. (1988). Conceptions of Algebra and Uses of Variables. In NCTM (Ed.), The Ideas of Algebra, K-12. (pp. 8–19). Reston: NCTM.

  • Verschaffel, L., Greer, B., & De Corte, E. (2000). Making sense of word problems. Lisse: Swets & Zeitlinger.

    Google Scholar 

  • vom Hofe, R., Kleine, M., Blum, W., & Pekrun, R. (2006). The effect of mental [basic] models (“Grundvorstellungen”) for the development of mathematical competencies. In M. Bosch (Ed.), Proceedings of CERME 4 (pp. 142–151). Sant Feliu: Fundemi IQS, ERME.

  • Wood, D. J., Bruner, J. S., & Ross, G. (1976). The role of tutoring in problem solving. Journal of Child Psychiatry and Psychology, 17(2), 89–100.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Prediger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prediger, S., Krägeloh, N. Low achieving eighth graders learn to crack word problems: a design research project for aligning a strategic scaffolding tool to students’ mental processes. ZDM Mathematics Education 47, 947–962 (2015). https://doi.org/10.1007/s11858-015-0702-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11858-015-0702-7

Keywords

Navigation