Skip to main content

Advertisement

Log in

Changed views on mathematical knowledge in the course of didactical theory development—independent corpus of scientific knowledge or result of social constructions?

  • Original article
  • Published:
ZDM Aims and scope Submit manuscript

Abstract

The study tries to show one line of how the German didactical tradition has evolved in response to new theoretical ideas and new—empirical—research approaches in mathematics education. First, the classical mathematical didactics, notably ‘stoffdidaktik’ as one (besides other) specific German tradition are described. The critiques raised against ‘stoffdidaktik’ concepts [for example, forms of ‘progressive mathematisation’, ‘actively discovering learning processes’ and ‘guided reinvention’ (cf. Freudenthal, Wittmann)] changed the basic views on the roles that ‘mathematical knowledge’, ‘teacher’ and ‘student’ have to play in teaching–learning processes; this conceptual change was supported by empirical studies on the professional knowledge and activities of mathematics teachers [for example, empirical studies of teacher thinking (cf. Bromme)] and of students’ conceptions and misconceptions (for example, psychological research on students’ mathematical thinking). With the interpretative empirical research on everyday mathematical teaching–learning situations (for example, the work of the research group around Bauersfeld) a new research paradigm for mathematics education was constituted: the cultural system of mathematical interaction (for instance, in the classroom) between teacher and students.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. In this paper ‘stoffdidaktik’ is restricted to a certain fundamentalist form of content related mathematical analysis that is based on ideas on the New Math era. Later there have been further developments and modifications of the stoffdidaktik approach—no longer explicitly linked to the New Math era—that relates the analysis of mathematical content knowledge to the learning processes of students. These kinds of stoffdidaktik still exist; there are also types of stoffdidaktik that emphasize the epistemological analysis of mathematical content matter.

References

  • Arbeitsgruppe ‘Mathematiklehrerausbildung’. (1981). Perspektiven für die Ausbildung des Mathematiklehrers. Köln: Aulis Verlag Deubner & CoKG.

  • Bartolini-Bussi, M. G., & Bazzini, L. (2003). Research, practice and theory in didactics of mathematics: towards dialogue between different fields. Educational Studies in Mathematics, 54(2–3), 203–223.

    Article  Google Scholar 

  • Bauersfeld, H. (1978). Kommunikationsmuster im Mathematikunterricht—Eine Analyse am Beispiel der Handlungsverengung durch Antworterwartung. In H. Bauersfeld (Ed.), Fallstudien und Analysen zum Mathematikunterricht (pp. 158–170). Hannover: Schroedel.

    Google Scholar 

  • Bauersfeld, H. (1988). Interaction, construction and knowledge: alternative perspectives for mathematics education. In D.A. Grouws, T.J. Cooney, & D. Jones (Eds.), Effective Mathematics Teaching (pp. 27–46). Reston: NCTM & Lawrence Erlbaum.

    Google Scholar 

  • Bazzini, L. (Ed.). (1994). Theory and practice in mathematics education. In Proceedings of the Fifth International Conference on Systematic Cooperation between Theory and Practice in Mathematics Education, Grado, Italy. Padua: ISDAF.

  • Bourbaki, N. (1971). The architecture of mathematics. In F. Le Lionnais (Ed.), Great Currents of Mathematical Thought (pp. 23–36). New York: Dover.

    Google Scholar 

  • Bromme, R. (1981). Das Denken von Lehrern bei der Unterrichtsvorbereitung. Eine empirische Untersuchung zu kognitiven Prozessen von Mathematiklehrern. Weinheim: Beltz.

    Google Scholar 

  • Bromme, R. (1992). Der Lehrer als Experte. Zur Psychologie des professionellen Wissens. Bern, Göttingen: Verlag Hans Huber.

    Google Scholar 

  • Bromme, R., & Seeger, F. (1979). Unterrichtsplanung als Handlungsplanung. Königstein: Scriptor.

    Google Scholar 

  • Bruner, J. (1972). Einige Elemente des Entdeckens. In: A. Halbfas et al. (Eds.), Entwicklung der Lernfähigkeit (pp. 84–99). Stuttgart: Klett.

  • Cassirer, E. (1923). Substance and Function & Einstein's Theory of Relativity. New York, Dover.

    Google Scholar 

  • Cassirer, E. (1957). The philosophy of symbolic forms. Volume 3: the phenomenology of knowledge. New Haven: Yale University Press.

    Google Scholar 

  • Cobb, P. & Bauersfeld, H. (Eds.). (1995). The emergence of mathematical meaning—interaction in classroom cultures (Vol. 2). Hillsdale: Lawrence Erlbaum.

    Google Scholar 

  • Cobb, P., Yackel E. & Wood, T. (1991). Learning through problem solving: a constructivist approach to second grade mathematics. In: E.v. Glasersfeld (Ed.), Radical constructivism in mathematics education (pp. 157–176). Dordrecht: Kluwer.

    Google Scholar 

  • Even, R., & Loewenberg Ball, D. (Eds.). (2003). Connecting research, practise and theory in the development and study of mathematics education. Special Issue of Educational Studies in Mathematics, 54, 2–3.

    Google Scholar 

  • Freudenthal, H. (1973). Mathematics as an educational task. Dordrecht: D. Reidel.

    Google Scholar 

  • Glasersfeld, E.v. (Ed.). (1991). Radical constructivism in mathematics education. Dordrecht: Kluwer.

    Google Scholar 

  • Griesel, H. (1971). Die Neue Mathematik für Lehrer und Studenten (Band 1). Hannover: Hermann Schroedel Verlag KG.

    Google Scholar 

  • Griesel, H. (1974). Überlegungen zur Didaktik der Mathematik als Wissenschaft. Zentralblatt für Didaktik der Mathematik, 3, 115–119.

    Google Scholar 

  • Holland, G. (1974). Geometrie für Lehrer und Studenten (Band 1). Hannover: Hermann Schroedel Verlag KG.

    Google Scholar 

  • Jahnke, H. N., & Otte, M. (1981). On ‘Science as a Language’. In: H. N. Jahnke, & M. Otte (Eds.), Epistemological and social problems of the sciences in the early Nineteenth century (pp. 75–89). Dordrecht: Reidel.

    Google Scholar 

  • Kline, M. (1973). Why Jonny can’t add: the failure of new maths. London: St. James Press.

    Google Scholar 

  • Krainer K. (2003). “Selbstständig arbeiten—aber auch gemeinsam und kritisch prüfend!” Aktion, Reflexion, Autonomie und Vernetzung als Qualitätsdimensionen von Unterricht und Lehrerbildung. In: H.-W. Henn (Ed.), Beiträge zum Mathematikunterricht 2003 (pp. 25–32). Hildesheim, Berlin: Franzbecker.

    Google Scholar 

  • Krummheuer, G. (1984). Zur unterrichtsmethodischen Diskussion von Rahmungsprozessen. Journal für Mathematik Didaktik, 5(4), 285–306.

    Google Scholar 

  • Krummheuer, G. (1988). Verständigungsprobleme im Mathematikunterricht. Der Mathematikunterricht, 34(2), 55–60.

    Google Scholar 

  • Künzli, R. (2000). German Didaktik: Models of Re-presentation, of Intercourse, and of Experience. In: I. Westbury, S. Hopmann, & K. Riquarts (Eds.), Teaching as a reflective practice—The German tradition. Mahwah (pp. 41–54). New Jersey: Lawrence Erlbaum.

    Google Scholar 

  • Maier, H., & Voigt, J. (Eds.). (1991). Interpretative Unterrichtsforschung. Köln: Aulis.

    Google Scholar 

  • Maier, H., Voigt, J. (Eds.). (1994). Verstehen und Verständigung im Mathematikunterricht—Arbeiten zur interpretativen Unterrichtsforschung. Köln: Aulis.

    Google Scholar 

  • Peterßen, W. H. (2001). Lehrbuch Allgemeine Didaktik. 6. Auflage, München: Oldenbourg Schulbuchverlag GmbH.

    Google Scholar 

  • Scherer, P., & Steinbring, H. (2006). Noticing children’s learning processes—teachers jointly reflect on their own classroom interaction for improving mathematics teaching. Journal of Mathematics Teacher Education, 9(2), 157–185.

    Google Scholar 

  • Seeger, F., & Steinbring, H. (Eds.). (1992). The dialogue between theory and practice in mathematics education: Overcoming the broadcast metaphor. In Proceedings of the Fourth Conference on Systematic Cooperation between Theory and Practice in Mathematics Education (SCTP). Brakel. (IDM Materialien und Studien 38). Bielefeld: IDM Universität Bielefeld.

  • Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4–14.

    Google Scholar 

  • Solomon, Y. (1989). The practice of mathematics. London: Routledge & Kegan.

    Google Scholar 

  • Sorger, P. (1991). 25 Jahre Bewegung im Mathematikunterricht der Grundschule—doch was hat sich wirklich bewegt? In: Beiträge zum Mathematikunterricht. (pp. 33–40). Bad Salzdetfurth: Franzbecker.

  • Steinbring, H. (1994). Dialogue between theory and practice in mathematics education. In: R. Biehler, R.W. Scholz, R. Strässer, & B. Winkelmann (Eds.), Didactics of mathematics as a scientific discipline (pp. 89–102). Dordrecht: Kluwer.

    Google Scholar 

  • Steinbring, H. (1997). Vorraussetzungen und Perspektiven der Erforschung mathematischer Kommunikationsprozesse. In G.N. Müller, H. Steinbring, & E.Ch. Wittmann (Eds.), 10 Jahre “mathe 2000” —Bilanz und Perspektive (pp. 66–75). Leipzig: Ernst Klett Grundschulverlag.

    Google Scholar 

  • Steinbring, H. (1998a). From ‘Stoffdidaktik’ to social interactionism: An evolution of approaches to the study of language and communication in German mathematics education research. In H. Steinbring, M. G. B. Bussi, & A. Sierpinska (Eds.), Language and Communication in the Mathematics Classroom. (pp. 102–119). Reston, Virginia: National Council of Teachers of Mathematics.

    Google Scholar 

  • Steinbring, H. (1998b). Mathematikdidaktik: Die Erforschung theoretischen Wissens in sozialen Kontexten des Lernens und Lehrens. Zentralblatt für Didaktik der Mathematik, 5, 161–167.

    Article  Google Scholar 

  • Steinbring, H. (1998c). Elements of epistemological knowledge for mathematics teachers. Journal of Mathematics Teacher Education, 1(2), 157–189.

    Article  Google Scholar 

  • Steinbring, H. (2005). The construction of new mathematical knowledge in classroom interaction—An epistemological perspective. Mathematics Education Library, Vol. 38. Berlin: Springer.

    Google Scholar 

  • Steinbring, H. (2006). What makes a sign a mathematical sign?—An epistemological perspective on mathematical interaction. Educational Studies in Mathematics, 61(1–2), 133–162.

    Article  Google Scholar 

  • Steiner, H.G. (1974). Didaktik der Mathematik. Analysen, Vorbemerkung. Zentralblatt für Didaktik der Mathematik, 6(3), 109.

    Google Scholar 

  • Strässer, R. (1994). A propos de la transposition franco-allemande en didactique des mathématiques. In M. Artigue, R. Gras, C. Laborde, & P. Tavignot (Eds.), Vingt Ans de Didactique des Mathématiques en France. (pp. 161–176). Grenoble: La Pensée Sauvage, Editions.

    Google Scholar 

  • Verstappen P. F. L. (Ed.). (1988). Report of the second conference on systematic cooperation between theory and practice in mathematics education. Lochem/Netherlands. Enschede: S.L.O.

    Google Scholar 

  • Voigt, J. (1984). Interaktionsmuster und Routinen im Mathematikunterricht—Theoretische Grundlagen und mikroethnographische Falluntersuchungen. Weinheim: Beltz.

    Google Scholar 

  • Voigt, J. (1994). Negotiation of mathematical meaning and learning mathematics. Educational Studies in Mathematics, 26, 275–298.

    Article  Google Scholar 

  • Voigt, J. (1996). Empirische Unterrichtsforschung in der Mathematikdidaktik. In G. Kadunz, G. Kautschitsch, G. Ossimitz, & E. Schneider (Eds.), Trends und Perspektiven, Beiträge zum 7. Internationalen Symposium zur ‘Didaktik der Mathematik’, (Klagenfurt 1994). (pp. 383–398). Wien: Hölder-Pichler-Tempsky.

    Google Scholar 

  • Winter, H. (1985). Reduktionistische Ansätze in der Mathematikdidaktik. Der Mathematikunterricht (MU), 5, 75–88.

    Google Scholar 

  • Wittmann, E. C. (1992). Mathematikdidaktik als ‘design science’. Journal für Didaktik der Mathematik, 13(1), 55–70.

    Google Scholar 

  • Wittmann, E. C. (1995). Mathematics education as a ‘Design Science’. Educational Studies in Mathematics, 29, 355–374.

    Article  Google Scholar 

  • Wittmann, E. C. (1998). Mathematics education as a ‘Design Science’. In A. Sierpinska, & J. Kilpatrick (Eds.), Mathematics education as a research domain: A Search for Identity An ICMI Study, Book I. (pp. 87–103). Dordrecht: Kluwer.

    Google Scholar 

  • Wittmann, E. C. (2001). Developing mathematics education in a systemic process. Educational Studies in Mathematics, 48(1), 1–20.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz Steinbring.

Additional information

Many parts of this contribution are based on Steinbring, 2005. A first version of this paper was presented at the Seminar Series: “Mathematical Knowledge in Teaching”, Conceptualising and theorising mathematical knowledge in teaching (11–12 January 2007—2 days—Cambridge), organized by Kenneth Ruthven and Tim Rowland, University of Cambridge).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steinbring, H. Changed views on mathematical knowledge in the course of didactical theory development—independent corpus of scientific knowledge or result of social constructions?. ZDM Mathematics Education 40, 303–316 (2008). https://doi.org/10.1007/s11858-008-0077-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11858-008-0077-0

Keywords

Navigation