Skip to main content
Log in

Phase Field Modelling of Dendritic Solidification Under Additive Manufacturing Conditions

  • High Temperature Alloys: Manufacturing, Processing, and Repair
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Melting and solidification in metal-based additive manufacturing (AM) ultimately determine the crystallographic texture, cellular/columnar dendritic growth, solute segregation, and resultant materials properties. The microstructure of AM-built alloys is closely related to various physics during the printing process. In the present study, a multi-physics model was developed to simulate the evolution of grain and dendritic-scale microstructure during laser AM of a Ni-based alloy. Computational fluid dynamics was used to simulate the melt pool dynamics and temperature distribution for the laser powder bed fusion process. Using Ni-Nb as an analogue to Inconel 625, a phase field model was applied to predict the microstructural features within a two-dimensional solidified melt pool. The predicted results exhibit fair agreement with experimental characteristics in the literature, including melt pool profile, dendrite size, dendrite morphology, and crystallographic texture. The multi-physics model paves the way for computationally predicting the chemistry-process-structure relationship in AM-built alloys, which helps to understand the fundamental physics of AM solidification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. T. DebRoy, H. Wei, J. Zuback, T. Mukherjee, J. Elmer, J. Milewski, A.M. Beese, A. Wilson-Heid, A. De, and W. Zhang, Prog. Mater. Sci. 92, 112. (2018).

    Article  Google Scholar 

  2. T. DebRoy, T. Mukherjee, J. Milewski, J. Elmer, B. Ribic, J. Blecher, and W. Zhang, Nat. Mater. 18, 1026. (2019).

    Article  Google Scholar 

  3. M.M. Francois, A. Sun, W.E. King, N.J. Henson, D. Tourret, C.A. Bronkhorst, N.N. Carlson, C.K. Newman, T.S. Haut, and J. Bakosi, Curr. Opin. Solid State Mater. Sci. 21, 198. (2017).

    Article  Google Scholar 

  4. C. Körner, M. Markl, and J.A. Koepf, Metall. Mater. Trans. A. 51, 4970. (2020).

    Article  Google Scholar 

  5. T.M. Rodgers, J.D. Madison, and V. Tikare, Comput. Mater. Sci. 135, 78. (2017).

    Article  Google Scholar 

  6. H. Wei, J. Elmer, and T. DebRoy, Acta Mater. 126, 413. (2017).

    Article  Google Scholar 

  7. Y. Lian, S. Lin, W. Yan, W.K. Liu, and G.J. Wagner, Comput. Mech. 61, 543. (2018).

    Article  MathSciNet  Google Scholar 

  8. B. Böttger, J. Eiken, and I. Steinbach, Acta Mater. 54, 2697. (2006).

    Article  Google Scholar 

  9. R. Acharya, J.A. Sharon, and A. Staroselsky, Acta Mater. 124, 360. (2017).

    Article  Google Scholar 

  10. S. Ghosh, L. Ma, N. Ofori-Opoku, and J.E. Guyer, Model. Simul. Mater. Sci. Eng. 25, 065002. (2017).

    Article  Google Scholar 

  11. T. Keller, G. Lindwall, S. Ghosh, L. Ma, B.M. Lane, F. Zhang, U.R. Kattner, E.A. Lass, J.C. Heigel, and Y. Idell, Acta Mater. 139, 244–253. (2017).

    Article  Google Scholar 

  12. X. Wang, P. Liu, Y. Ji, Y. Liu, M. Horstemeyer, and L. Chen, J. Mater. Eng. Perform. 28, 657–665. (2019).

    Article  Google Scholar 

  13. W. Xiao, S. Li, C. Wang, Y. Shi, J. Mazumder, H. Xing, and L. Song, Mater. Des. 164, 107553. (2019).

    Article  Google Scholar 

  14. J.D. Roehling, A. Perron, J.-L. Fattebert, T. Haxhimali, G. Guss, T.T. Li, D. Bober, A.W. Stokes, A.J. Clarke, and P.E. Turchi, JOM 70, 1589. (2018).

    Article  Google Scholar 

  15. J. Kundin, A. Ramazani, U. Prahl, and C. Haase, Metall. Mater. Trans. A. 50, 2022. (2019).

    Article  Google Scholar 

  16. K. Karayagiz, L. Johnson, R. Seede, V. Attari, B. Zhang, X. Huang, S. Ghosh, T. Duong, I. Karaman, and A. Elwany, Acta Mater. 185, 320. (2020).

    Article  Google Scholar 

  17. S.A. Nabavizadeh, M. Eshraghi, and S.D. Felicelli, J. Cryst. Growth 549, 125879. (2020).

    Article  Google Scholar 

  18. D. Montiel, L. Liu, L. Xiao, Y. Zhou, and N. Provatas, Acta Mater. 60, 5925. (2012).

    Article  Google Scholar 

  19. A. Badillo, and C. Beckermann, Acta Mater. 54, 2015. (2006).

    Article  Google Scholar 

  20. Z. Gan, Y. Lian, S.E. Lin, K.K. Jones, W.K. Liu, and G.J. Wagner, Integr. Mater. Manuf. Innov. 8, 178–193. (2019).

    Article  Google Scholar 

  21. X. Lingda, Z. Guoli, M. Gaoyang, W. Chunming, and J. Ping, J. Alloys Compd. 858, 157669. (2021).

    Article  Google Scholar 

  22. T. Pinomaa, and N. Provatas, Acta Mater. 168, 167. (2019).

    Article  Google Scholar 

  23. P.I. O’Toole, M.J. Patel, C. Tang, D. Gunasegaram, A.B. Murphy, and I.S. Cole, Addit. Manuf. 48, 102353. (2021).

    Google Scholar 

  24. H. Jasak, A. Jemcov, and Z. Tukovic, International workshop on coupled methods in numerical dynamics (IUC Dubrovnik Croatia, Croatia, 2007), pp 1–20.

    Google Scholar 

  25. C. Tang, K. Le, and C. Wong, Int. J. Heat Mass Transf. 149, 119172. (2020).

    Article  Google Scholar 

  26. C. Boley, S. Mitchell, A. Rubenchik, and S. Wu, Appl. Opt. 55, 6496. (2016).

    Article  Google Scholar 

  27. A. Karma, Phys. Rev. Lett. 87, 115701. (2001).

    Article  Google Scholar 

  28. B. Echebarria, R. Folch, A. Karma, and M. Plapp, Phys. Rev. E 70, 061604. (2004).

    Article  Google Scholar 

  29. B. Echebarria, A. Karma, and S. Gurevich, Phys. Rev. E 81, 021608. (2010).

    Article  Google Scholar 

  30. T. Takaki, M. Ohno, T. Shimokawabe, and T. Aoki, Acta Mater. 81, 272–283. (2014).

    Article  Google Scholar 

  31. M. Tegeler, O. Shchyglo, R.D. Kamachali, A. Monas, I. Steinbach, and G. Sutmann, Comput. Phys. Commun. 215, 173–187. (2017).

    Article  MathSciNet  Google Scholar 

  32. S. Geng, P. Jiang, L. Guo, X. Gao, and G. Mi, Int. J. Heat Mass Transf. 149, 119252. (2020).

    Article  Google Scholar 

  33. M. Rappaz, and C.-A. Gandin, Acta Metall. Mater. 41, 345. (1993).

    Article  Google Scholar 

  34. X. Li, and W. Tan, Comput. Mater. Sci. 153, 159. (2018).

    Article  Google Scholar 

  35. S. Ghosh, N. Ofori-Opoku, and J.E. Guyer, Comput. Mater. Sci. 144, 256. (2018).

    Article  Google Scholar 

  36. S. Kavousi, and M.A. Zaeem, Acta Mater. 205, 116562. (2021).

    Article  Google Scholar 

  37. M.R. Stoudt, M.E. Williams, L.E. Levine, A. Creuziger, S.A. Young, J.C. Heigel, B.M. Lane, and T.Q. Phan, Integr. Mater. Manuf. Innov. 9, 54–69. (2020).

    Article  Google Scholar 

  38. Y. Lian, Z. Gan, C. Yu, D. Kats, W.K. Liu, and G.J. Wagner, Mater. Des. 169, 107672. (2019).

    Article  Google Scholar 

  39. L. Levine, https://www.nist.gov/ambench/amb2018-02-description. Accessed 18 June 2018

  40. S. Ghosh, L. Ma, L.E. Levine, R.E. Ricker, M.R. Stoudt, J.C. Heigel, and J.E. Guyer, JOM 70, 1011. (2018).

    Article  Google Scholar 

  41. F. Yu, and Y. Wei, Metall. Mater. Trans. A. 49, 3293. (2018).

    Article  Google Scholar 

  42. D. Tourret, and A. Karma, Acta Mater. 82, 64. (2015).

    Article  Google Scholar 

  43. N. Ahmad, A. Wheeler, W.J. Boettinger, and G.B. McFadden, Phys. Rev. E 58, 3436. (1998).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support by the National Research Foundation, Prime Minister’s Office, Singapore, under its Medium Sized centre funding scheme. The computational work for this article was partially performed on resources of the National Supercomputing Centre, Singapore (https://www.nscc.sg). Thanks are extended to Dr Patrick I. O’Toole and Dr. Milan J. Patel for the valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao Tang or Hejun Du.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 926 KB)

Supplementary file2 (AVI 17035 KB)

Supplementary file3 (AVI 29011 KB)

Supplementary file4 (AVI 10867 KB)

Supplementary file5 (AVI 12386 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, C., Du, H. Phase Field Modelling of Dendritic Solidification Under Additive Manufacturing Conditions. JOM 74, 2996–3009 (2022). https://doi.org/10.1007/s11837-022-05310-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05310-3

Navigation