Skip to main content
Log in

Rapid Solidification in Bulk Ti-Nb Alloys by Single-Track Laser Melting

  • Additive Manufacturing: Integrated Computational and Experimental Methods
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Single-track laser melting experiments were performed on bulk Ti-Nb alloys to explore process parameters and the resultant macroscopic structure and microstructure. The microstructures in Ti-20Nb and Ti-50Nb (at.%) alloys exhibited cellular growth during rapid solidification, with average cell size of approximately 0.5 µm. Solidification velocities during cellular growth were calculated from images of melt tracks. Measurements of the composition in the cellular and intercellular regions revealed nonequilibrium partitioning and its dependence on velocity during rapid solidification. Experimental results were used to benchmark a phase-field model to describe rapid solidification under conditions relevant to additive manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S.H. Huang, P. Liu, A. Mokasdar, and L. Hou, Int. J. Adv. Manuf. 67, 1191 (2013).

    Article  Google Scholar 

  2. W.E. Frazier, J. Mater. Eng. Perform. 23, 1917 (2014).

    Article  Google Scholar 

  3. S.S. Babu and R. Goodridge, Mater. Sci. Technol. 31, 881 (2015).

    Article  Google Scholar 

  4. T. Kelner, The FAA cleared the first 3D printed part to fly in a commercial jet engine from GE (2015). https://www.ge.com/reports/post/116402870270/the-faa-cleared-the-first-3d-printed-part-to-fly-2/. Accessed Dec 2017.

  5. M. Seifi, A. Salem, J. Beuth, O. Harrysson, and J.J. Lewandowski, JOM 68, 747 (2016).

    Article  Google Scholar 

  6. W.E. King, H.D. Barth, V.M. Castillo, G.F. Gallegos, J.W. Gibbs, D.E. Hahn, C. Kamath, and A.M. Rubenchik, J. Mater. Process. Technol. 214, 2915 (2014).

    Article  Google Scholar 

  7. S.A. Khairallah, A.T. Anderson, A. Rubenchik, and W.E. King, Acta Mater. 108, 36 (2016).

    Article  Google Scholar 

  8. M.J. Matthews, G. Guss, S.A. Khairallah, A.M. Rubenchik, P.J. Depond, and W.E. King, Acta Mater. 114, 33 (2016).

    Article  Google Scholar 

  9. S. Ly, A.M. Rubenchik, S.A. Khairallah, G. Guss, and M.J. Matthews, Sci. Rep. 7, 4085 (2017).

    Article  Google Scholar 

  10. R.R. Dehoff, M.M. Kirka, W.J. Sames, H. Bilheux, A.S. Tremsin, L.E. Lowe, and S.S. Babu, Mater. Sci. Technol. 31, 931 (2015).

    Article  Google Scholar 

  11. T.T. Roehling, S.S.Q. Wu, S.A. Khairallah, J.D. Roehling, S.S. Soezeri, M.F. Crumb, and M.J. Matthews, Acta Mater. 128, 197 (2017).

    Article  Google Scholar 

  12. T.S. Hutchison, G. Ocampo, and G.J.C. Carpenter, Scr. Metall. 19, 635 (1985).

    Article  Google Scholar 

  13. C. Leyens and M. Peters, Titanium and Titanium Alloys (Weinheim: Wiley, 2003).

    Book  Google Scholar 

  14. S. Hanada, H. Matsumoto, and S. Watanabe, Int. Congr. Ser. 1284, 239 (2005).

    Article  Google Scholar 

  15. C. Baker, Met. Sci. J. 5, 92 (2013).

    Article  Google Scholar 

  16. M. Bönisch, M. Calin, T. Waitz, A. Panigrahi, M. Zehetbauer, A. Gebert, W. Skrotzki, and J. Eckert, Sci. Technol. Adv. Mater. 14, 055004 (2013).

    Article  Google Scholar 

  17. H. Schwab, K. Prashanth, L. Löber, U. Kühn, and J. Eckert, Metals 5, 686 (2015).

    Article  Google Scholar 

  18. M. Fischer, P. Lahuerte, P. Acquier, D. Joguet, L. Peltier, T. Petithory, K. Anselme, and P. Mille, Mater. Sci. Eng. C 75, 341 (2017).

    Article  Google Scholar 

  19. D. Yang, Z. Guo, H. Shao, X. Liu, and Y. Ji, Procedia Eng. 36, 160 (2012).

    Article  Google Scholar 

  20. A.H. Hussein, M.A.-H. Gepreel, M.K. Gouda, A.M. Hefnawy, and S.H. Kandil, Mater. Sci. Eng. C 61, 574 (2016).

    Article  Google Scholar 

  21. T. Sibillano, A. Ancona, V. Berardi, E. Schingaro, G. Basile, and P. Lugara, J. Mater. Process. Technol. 191, 364 (2007).

    Article  Google Scholar 

  22. M. Zimmermann, M. Carrard, and W. Kurz, Acta Metall. 37, 3305 (1989).

    Article  Google Scholar 

  23. M.R. Dorr, J.-L. Fattebert, M.E. Wickett, J.F. Belak, and P.E.A. Turchi, J. Comput. Phys. 229, 626 (2010).

    Article  MathSciNet  Google Scholar 

  24. J.-L. Fattebert, M.E. Wickett, and P.E.A. Turchi, Acta Mater. 62, 89 (2014).

    Article  Google Scholar 

  25. A. Perron, J.D. Roehling, P.E.A. Turchi, J.-L. Fattebert, and J.T. McKeown, Model. Simul. Mater. Sci. Eng. 26, 014002 (2018).

    Article  Google Scholar 

  26. Y. Zhang, H. Liu, and Z. Jin, CALPHAD 25, 305 (2001).

    Article  Google Scholar 

  27. Y. Liu, T. Pan, L. Zhang, D. Yu, and Y. Ge, J. Alloys Compd. 476, 429 (2009).

    Article  Google Scholar 

  28. R. Kobayashi, Physica D 63, 410 (1993).

    Article  Google Scholar 

  29. V. Fallah, M. Amoorezaei, N. Provatas, S.F. Corbin, and A. Khajepour, Acta Mater. 60, 1633 (2012).

    Article  Google Scholar 

  30. T. Keller, G. Lindwall, S. Ghosh, L. Ma, B.M. Lane, F. Zhang, U.R. Kattner, E.A. Lass, J.C. Heigel, Y. Idell, M.E. Williams, A.J. Allen, J.E. Guyer, and L.E. Levine, Acta Mater. 139, 244 (2017).

    Article  Google Scholar 

  31. A.T. D’Annessa, Weld. J., Weld. Res. Suppl. 49, 41 (1970).

    Google Scholar 

  32. T. Anthony and H. Cline, J. Appl. Phys. 48, 3895–3900 (1977).

    Article  Google Scholar 

  33. P. Wei, Y. Chen, J. Ku, and C. Ho, Metall. Mater. Trans. B 34, 421 (2003).

    Article  Google Scholar 

  34. W. Kurz and D.J. Fisher, Fundmentals of Solidification (Zürich: Trans Tech, 1984).

    Google Scholar 

  35. G.E. Lloyd, Mineral. Mag. 51, 3 (1987).

    Article  Google Scholar 

  36. J.D. Hunt, in Proceedings of the International Conference on Solidification and Casting of Metals, The Metals Society, London, 1979.

  37. W. Kurz and D.J. Fischer, Acta Metall. 29, 11 (1981).

    Article  Google Scholar 

  38. J.D. Hunt and S.-Z. Lu, Metall. Mater. Trans. A 27, 611 (1996).

    Article  Google Scholar 

  39. D. Ma and P.R. Sahm, Metall. Mater. Trans. A 29, 1113 (1998).

    Article  Google Scholar 

  40. C. Huang and S. Kou, Weld. J. 80, 46 (2001).

    Google Scholar 

  41. S.S. Babu, J.W. Elmer, J.M. Vitek, and S.A. David, Acta Mater. 50, 4763 (2002).

    Article  Google Scholar 

  42. R. Trivedi, S.A. David, M.A. Eshelman, J.M. Vitek, S.S. Babu, T. Hong, and T. DebRoy, J. Appl. Phys. 93, 4885 (2003).

    Article  Google Scholar 

  43. S.J. Pennycook, Ultramicroscopy 30, 58 (1989).

    Article  Google Scholar 

  44. H. Okamoto, Nb-Ti Phase Diagram, ASM International Materials Park, OH (2016). http://www.asminternational.org. Accessed Dec 2017.

  45. U.S. Bertoli, G. Guss, S. Wu, M.J. Matthews, and J.M. Schoenung, Mater. Des. 135, 385 (2017).

    Article  Google Scholar 

  46. M.J. Aziz, J. Appl. Phys. 53, 1158 (1982).

    Article  Google Scholar 

  47. W.J. Boettinger and J.A. Warren, J. Cryst. Growth 200, 583 (1999).

    Article  Google Scholar 

Download references

Acknowledgements

This work was performed under the auspices of the U.S. Department of Energy (DOE) by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. Work was supported by the Laboratory Directed Research and Development (LDRD) Program under project tracking Code 18-SI-003. TEM work was performed at the Colorado School of Mines and was supported by A.J.C.’s Early Career Award from the U.S. DOE, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, Award No. DE-SC0016061. J.-L.F. acknowledges support from the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. DOE, Office of Science, and the National Nuclear Security Administration. The authors thank Nick Teslich at LLNL for his impeccable work on the FIB specimen preparation for TEM and John Mangum at CSM for his help with the NanoMill®.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph T. McKeown.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roehling, J.D., Perron, A., Fattebert, JL. et al. Rapid Solidification in Bulk Ti-Nb Alloys by Single-Track Laser Melting. JOM 70, 1589–1597 (2018). https://doi.org/10.1007/s11837-018-2920-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-2920-2

Navigation